A Systematic Investigation of the Stability Field of Spinel-type Gallium Oxonitrides

Stefanie A. Heringa, Carmen E. Zvoristeb, Ralf Riedelb, Isabel Kinskic, and Hubert Huppertzd

a Department Chemie und Biochemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5–13 (Haus D), D-81377 München, Germany
b Technische Universität Darmstadt, Material- und Geowissenschaften, Petersenstraße 23, D-64287 Darmstadt, Germany
c Fraunhofer-Institut für Keramische Technologien und Systeme, Winterbergstraße 28, D-01277 Dresden, Germany
d Institut für Allgemeine, Anorganische und Theoretische Chemie, Leopold-Franzens-Universität Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria

Reprint requests to H. Huppertz. E-mail: Hubert.Huppertz@uibk.ac.at

\emph{Z. Naturforsch.} \textbf{2009}, \textit{64b}, 1115–1126; received July 21, 2009

Over the last years, the synthesis and characterization of new spinel-type gallium oxonitrides were in the focus of several working groups. Our systematic investigation of the formation of the gallium oxonitride spinel phases was done under different experimental conditions and with various educts already used in former studies. The experiments took place under high-pressure/high-temperature conditions in a multianvil apparatus, starting from the end members wurtzite-structured GaN and β-Ga$_2$O$_3$. Beside the variation of the molar ratio of the educts (w-GaN:β-Ga$_2$O$_3$ = 9:1–1:9), different pressures (1–11.5 GPa), temperatures (500–1350 $^\circ$C), and heating protocols were studied to localize the formation area of the spinel-type gallium oxonitrides. From these results, initial conditions of 2.5–11.5 GPa at temperatures between 1000–1300 \textdegree C can be stated as leading to the formation of cubic, spinel-type gallium oxonitride phases. The temperature stability of the gallium oxonitride spinel phase as well as new results of the transformation of β-Ga$_2$O$_3$ into α-Ga$_2$O$_3$ are reported.

\textbf{Key words:} High-pressure Synthesis, Gallium Oxonitride, Spinel Structure, Gallium Oxide