Reinvestigation of the Thiazole Synthesis with Ethyl 3-Amino-2-[5-aryl-1,3,4-oxadiazol-2(3H)-ylidene]-3-thioxopropanoates and Related Reactions

Nico Paepkea,b, Helmut Reinkea, Klaus Pesekea, and Christian Vogela

a Department of Organic Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany
b Current address: Schreiner Group GmbH & Co. KG, Bruckmannring 22, 85764 Oberschleißheim, Germany

Reprint requests to Prof. Dr. Christian Vogel. Fax: +49-381-498-6412.
E-mail: christian.vogel@uni-rostock.de

Z. Naturforsch. 2009, 64b, 719–726; received April 21, 2009

\textit{Dedicated with great appreciation to Professor Gerhard Maas on the occasion of his 60th birthday}

Treatment of the 1,3,4-oxadiazoles 3a and 3b with 3-chloropentane-2,4-dione gave the thiazoles 4a and 4b, respectively, which were methylated to furnish compounds 5a and 5b. The formation of 1,3,4-oxadiazoles using the 1,3-dithietane 1 as starting material, and the consecutive reactions mentioned above were transferred into sugar chemistry to provide the corresponding derivatives 6–9 in good yields. The reaction of 5a with benzyl amine, ethylene diamine and \textit{o}-phenylene diamine afforded compounds 10, 11, and 12, respectively, which possess better stabilized \textit{push-pull} systems than 5a. The structures of 3a, 4a, 5a, 10, 11, and 12 were compared with the previously proposed structures I–VI, respectively. The structures of compounds 1, 3b, and 11 were confirmed by X-ray diffraction studies.

\textit{Key words:} Diethyl (1,3-Dithietane-2,4-diylidene)bis(2-cyanoacetate), \textit{Push-pull} Chemistry, Hydrogen Sulfide Migration, Consecutive Ring Closure Reaction, Structural Reinvestigation