The Smallest “Aurophilic Species”

Raphael J. F. Berger
Anorganische Chemie und Strukturchemie, Universität Bielefeld, D-33615 Bielefeld, Germany
Reprint requests to Dr. R. J. F. Berger. E-mail: Raphael.Berger@uni-bielefeld.de

Z. Naturforsch. 2009, 64b, 388 – 394; received January 27, 2009

The existence of the \(C_{2v} \) symmetric closed-shell di\[gold(I)\]hydronium cation \([Au_2H]^+\) (1), is predicted. It is shown that 1 is the smallest possible molecular species containing aurophilic contacts. Equilibrium structural parameters, vibrational frequencies and formation energies of 1 from \(Au^+ \) and \(AuH \), have been calculated, employing a series of highly correlated but available standard relativistic \textit{ab initio} methods up to CCSD(T) level of theory and all-electron basis sets of quadruple-\(\zeta \) quality with double polarizations. Relativistic effects have been taken into account by employing pseudorelativistic electron core potentials (ECP) or a scalar relativistic treatment using a Douglas-Kroll-Heß Hamiltonian of 2nd, 3rd and 4th order (DKH2, DKH3, DKH4).

Key words: \(\text{Au(I)}-\text{Au(I)} \) Interaction, Metallophilic Interaction, Gold Hydride, Quantum Chemical Calculation