STM Analysis of a Chiral Helical One-dimensional Nickel(II) Coordination Polymer

Mohammad Sahabul Alama,b, Andreas Scheurerc, Rolf W. Saalfrankc, and Paul Müllera

a Department für Physik, Universität Erlangen-Nürnberg, Erwin-Rommel-Straße 1, 91058 Erlangen, Germany
b Department of Physics, University of Dhaka, Dhaka-1000, Bangladesh
c Lehrstuhl für Anorganische und Allgemeine Chemie, Department Chemie und Pharmazie, Universität Erlangen-Nürnberg, Egerlandstraße 1, 91056 Erlangen, Germany

Reprint requests to Dr. A. Scheurer. Fax: (+49) 9131-85-27367. E-mail: andreas.scheurer@chemie.uni-erlangen.de or Prof. Dr. P. Müller. Fax: (+49) 9131-15249. E-mail: phm@physik.uni-erlangen.de

\textit{Z. Naturforsch.} 2008, 63\textit{b}, 1443 – 1446; received October 2, 2008

C2-symmetric nickel(II) salen complexes [NiL\textsubscript{1}] \textit{I} were deposited on a highly oriented pyrolytic graphite (HOPG) surface from their acetone solutions. They aggregate easily to single, segregated, homochiral polymeric chains of \((M)\)-1D-\textsubscript{1}[NiL]\textsubscript{2} (2) on the substrate as also found in single crystals. In STM topography, the single helical 1D structures \textit{2} found on the surface were in excellent agreement with the dimension of aligned dimeric aggregates of \textit{1} obtained from X-ray crystallography. Weak intermolecular NiII…OMe coordinations \((d_{\text{MeO–Ni}} = 0.35\text{ nm})\) were found to be responsible for the formation of the chiral, helical and 1D assemblies on the substrate.

\textit{Key words:} Coordination Polymer, Helical Structures, Scanning Tunneling Microscopy, Self-assembly, Chiral Nickel(II) Salen Complexes