Rare Earth-rich Cadmium Compounds

RE_4TCd ($T = \text{Ni, Pd, Ir, Pt}$)

Falko M. Schappacher, Ute Ch. Rodewald, and Rainer Pöttgen

Institut für Anorganische und Analytische Chemie,
Universität Münster, Corrensstraße 30, D-48149 Münster, Germany

Reprint requests to R. Pöttgen.
E-mail: pottgen@uni-muenster.de

Z. Naturforsch. 2008, 63b, 1127–1130; received June 20, 2008

New intermetallic compounds RE_4TCd ($RE = \text{Y, La–Nd, Sm, Gd–Tm, Lu} ; T = \text{Ni, Pd, Ir, Pt}$) were synthesized by melting of the elements in sealed tantalum tubes in a high-frequency furnace. They crystallize with the Gd$_4$RhIn-type structure, space group $F\bar{4}3m$, $Z = 16$. The four gadolinium compounds were characterized by single crystal X-ray diffractometer data: $a = 1361.7(1)$ pm, $wR^2 = 0.062$, 456 F^2 values, 19 variables for Gd$_4$NiCd; $a = 1382.1(2)$ pm, $wR^2 = 0.077$, 451 F^2 values, 19 variables for Gd$_4$PdCd; $a = 1363.6(2)$ pm, $wR^2 = 0.045$, 494 F^2 values, 19 variables for Gd$_4$IrCd; $a = 1379.0(1)$ pm, $wR^2 = 0.045$, 448 F^2 values, 19 variables for Gd$_4$PtCd. The rare earth atoms build up transition metal-centered trigonal prisms which are condensed via common corners and edges, leading to three-dimensional adamantane-related networks. The cadmium atoms form Cd$_4$ tetrahedra which fill voids left in the prisms’ network.

Key words: Intermetallics, Cadmium, Crystal Chemistry