The new ternary stannide PrRuSn was synthesized from the elements via arc-melting. PrRuSn is isopointal to the orthorhombic TiNiSi-type structure, space group $Pnma$. The structure was characterized by X-ray powder and single crystal diffraction: $a = 761.7(2)$, $b = 483.9(2)$ and $c = 730.3(3)$ pm, $wR2 = 0.0386$, 433 F^2 values, 20 variables. The ruthenium and tin atoms in PrRuSn build up a three-dimensional [RuSn] polyanionic network with Ru–Sn distances in the range 268 – 274 pm. The praseodymium atoms fill channels within the polyanion. They bind to the network via short Pr–Ru distances of 301 and 302 pm. Electronic structure calculations on PrRuSn and isopointal PrPdSn underline these features and reveal strong T–Sn ($T = \text{Ru, Pd}$) interactions within both solid state structures.

Key words: Intermetallics, Stannide, Crystal Chemistry, Chemical Bonding