Structural and 121Sb Mössbauer Spectroscopic Investigations of the Antimonide Oxides $\text{RE MnSbO (RE = La, Ce, Pr, Nd, Sm, Gd, Tb)}$ and $\text{RE ZnSbO (RE = La, Ce, Pr)}$

Inga Schellenberg, Tom Nilges, and Rainer Pöttgen

Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 30, D-48149 Münster, Germany

Reprint requests to R. Pöttgen. E-mail: pottgen@uni-muenster.de

Z. Naturforsch. 2008, 63b, 834–840; received April 8, 2008

Quaternary antimonide oxides $\text{RE MnSbO (RE = La, Ce, Pr, Nd, Sm, Gd, Tb)}$ and $\text{RE ZnSbO (RE = La, Ce, Pr)}$ were synthesized from the $\text{RE Sb monoantimonides and MnO, respectively ZnO, in sealed tubes at 1170 K. Single crystals were obtained from NaCl/KCl salt fluxes. The ZrCuSiAs-type (space group $P4/nmm$) structures of LaMnSbO ($a = 423.95(7)$, $c = 955.5(27)$ pm, $wR^2 = 0.067$, 247 F^2), CeMnSbO ($a = 420.8(1)$, $c = 950.7(1)$ pm, $wR^2 = 0.097$, 250 F^2), SmMnSbO ($a = 413.1(1)$, $c = 942.3(1)$ pm, $wR^2 = 0.068$, 330 F^2), LaZnSbO ($a = 422.67(6)$, $c = 953.8(2)$ pm, $wR^2 = 0.052$, 259 F^2), and NdZnSbO ($a = 415.9(1)$, $c = 945.4(4)$ pm, $wR^2 = 0.109$, 206 F^2) were refined from single crystal X-ray diffractometer data. The structures consist of covalently bonded $(\text{RE}^{3+} \text{O}^2^-)^+$ and $(\text{T}^{2+} \text{Sb}^{3-})^-$ layers with weak ionic interlayer interactions. The oxygen and transition metal atoms both have tetrahedral coordination within the layers. 121Sb Mössbauer spectra of the RE MnSbO and RE ZnSbO compounds show single antimony sites with isomer shifts close to $−8 \text{ mm s}^{-1}$, in agreement with the antimonide character of these compounds. PrMnSbO and NdMnSbO show transferred hyperfine fields of 8 T at 4.2 K.

Key words: Antimonides, Oxides, Mössbauer Spectroscopy