K$_2$Fe$_{\text{III}0.5}$Ti$_{\text{III0.5}}$Ti$_{\text{IV1.0}}$(PO$_4$)$_3$: Preparation and Characterization of a Langbeinite-related Phosphate Containing Iron(III) and Mixed-valent Titanium

Ivan V. Ogorodnyka, Igor V. Zatovskya, Vyacheslav N. Baumerb, Nikolay S. Slobodyanika, Oleg V. Shishkinb, and Igor P. Voronac

a Department of Inorganic Chemistry, Taras Shevchenko National University, Volodymyrska str. 64, Kyiv 01033, Ukraine
b STC “Institute for Single Crystals”, National Academy of Science of Ukraine, Lenina ave. 60, Kharkiv 61001, Ukraine
c Institute of Semiconductor Physics, National Academy of Science of Ukraine, prospect Nauky 41, Kiev 03028, Ukraine

Reprint requests to Ivan V. Ogorodnyk. E-mail: ogorod@bigmir.net

Z. Naturforsch. 2008, 63b, 261 – 266; received November 21, 2007

A potassium mixed iron(III)-titanium(III)-titanium(IV) phosphate K$_2$Fe$_{\text{III}0.5}$Ti$_{\text{III0.5}}$Ti$_{\text{IV1.0}}$(PO$_4$)$_3$ has been obtained using a two-step flux interaction in evacuated sealed silica tubes. It forms tetrahedrally-shaped dark violet crystals which belong to the cubic system (space group $P2_13$) with the cell parameter $a = 9.8592(5)$ Å. The structure was refined from single-crystal X-ray diffraction data. [MO$_6$] octahedra and [PO$_4$] tetrahedra share their vertices forming a rigid 3D framework. The potassium cations are located in large closed cavities of the framework. A distribution of the 3d metals’ valence states in K$_2$Fe$_{\text{III}0.5}$Ti$_{\text{III0.5}}$Ti$_{\text{IV1.0}}$(PO$_4$)$_3$ has been proposed on the basis of magnetic measurements, structure investigations and bond-valence calculations as well as UV/vis and EPR spectroscopy.

Key words: Phosphate, Langbeinite, Flux Method, Mixed-valent, Magnetic Measurements