Local Environment and Electronic Structure in K$_2$NiF$_4$-type La$_{2}$Li$_{0.50}$Cu$_{0.50}$O$_4$ Doped by 57Fe

Igor Presniakova, Gérard Demazeaub, Alexei Baranovaa,b, Alexei Soboleva, Tatiyana Gubaidulinaa, and Viyacheslav Rusakova

a Lomonosov Moscow State University, Moscow, 119992 Leninskie Gory, Moscow, Russia
b ICMCB, CNRS, University BORDEAUX 1 “Sciences and Technologies”, site de l’ENSCPB, 87, Avenue du Dr A. Schweitzer, 33608 PESSAC-Cedex, France

Reprint requests to Prof. G. Demazeau. E-mail: gerard.demazeau@icmcb-bordeaux.cnrs.fr

Z. Naturforsch. 2008, 63b, 244 – 250; received September 6, 2007

The 57Fe Mössbauer spectrum of the oxide La$_{2}$Li$_{0.50}$Cu$_{0.50}$O$_4$ doped with 57Fe (1 at.-%) underlines at 300 K the presence of three different components: two corresponding to the substitution of 57Fe probe atoms for respectively “Cu$^{3+}$” [Fe(1)] and Li$^{+}$ [Fe(3)] and the third [Fe(2)] attributed to 57Fe associated with oxygen vacancies. A decrease of the temperature down to 77 K does not lead to essential changes of the Mössbauer parameters corresponding to the Fe(1) and Fe(2) sub-spectra. On the contrary, a drastic change occurs in the Fe(3) sub-spectrum which has been interpreted by a displacement of the charge-transfer equilibrium Fe$^{4+}$\(3\) + O$^{2-}$ \(\rightarrow\) Fe$^{3+}$\(3\) + O(L) at the Li$^{+}$ sites.

Key words: Solid State, Electronic Structure, 57Fe Mössbauer Spectroscopy, K$_2$NiF$_4$-type Compound