Synthesis and Characterization of a Three-dimensional Porous Compound:
$[\text{Cu}(\text{H}_2\text{O})_6][(\text{Cu}(\text{H}_2\text{O})_2)_2\{\text{Cu}(\text{H}_2\text{O})_4\text{H}_4\text{W}_{12}\text{O}_{42}\}] \cdot 12\text{H}_2\text{O}$

Chun-jing Zhang, Ya-guang Chen, Dong-mei Shi, and Hai-jun Pang

Key Laboratory of Polyoxometalate Science of Ministry of Education, College of Chemistry,
Northeast Normal University, Changchun 130024, P.R. China

Reprint requests to Dr. Yaguang Chen. E-mail: chenyg146@nenu.edu.cn

A novel transition metal polyoxotungstate, $[\text{Cu}(\text{H}_2\text{O})_6][(\text{Cu}(\text{H}_2\text{O})_2)_2\{\text{Cu}(\text{H}_2\text{O})_4\text{H}_4\text{W}_{12}\text{O}_{42}\}] \cdot 12\text{H}_2\text{O}$ (1), has been synthesized in aqueous solution and characterized by single-crystal X-ray diffraction, elemental analysis, IR and UV/vis spectroscopy, and TG analysis. The paradodecatungstate anions $[\text{H}_2\text{W}_{12}\text{O}_{42}]^{10-}$ are linked by CuO$_6$ octahedra, forming a three-dimensional (3D) structure. The magnetic susceptibility of compound 1 in the temperature range 2 – 300 K shows the presence of antiferromagnetic interactions within the uniform Cu2⋯Cu3 chains.

Key words: Polyoxometalates, Transition Metal Bridge, 3D Architecture, Magnetic Properties