Ab initio Molecular and Solid State Studies of the FeII Spin Cross-over System \([\text{Fe(btz)}_2(\text{NCS})_2]\) (btz = 2.2’-bis-4.5-dihydrothiazine)

Lara Kabalan\(^a\), Samir F. Matar\(^a\), Mirvat Zakhour\(^b\), and Jean François Létard\(^a\)

\(^a\) ICMCB, CNRS, Université Bordeaux 1. 87 Avenue du Dr. Albert Schweitzer, F-33608 Pessac Cedex, France

\(^b\) LCPM, Université Libanaise, Fanar-Beyrouth, Lebanon

Reprint requests to S. F. Matar. E-mail: matar@icmcb-bordeaux.cnrs.fr

Z. Naturforsch. 2008, 63b, 154 – 160; received October 12, 2007

Ab initio computations within the density functional theory are reported for the spin cross-over complex \([\text{Fe(btz)}_2(\text{NCS})_2]\) (btz = 2.2’-bis-4.5-dihydrothiazine), where 3\(d^6\) FeII is characterized by high-spin (HS \(t_{2g}^4, e_g^2\)) and low-spin (LS \(t_{2g}^6, e_g^0\)) states. Results of infrared and Raman spectra for the isolated molecule are complemented for the crystalline solid with a full account of the electronic band structure properties: the density of states assessing the crystal field effects and the chemical bonding, assigning a specific role to the Fe–N interactions within the coordination sphere of FeII.

Key words: Density Functional Theory, Spin Cross-over (SCO)