# Chemical Constituents from Pedicularis rex C. B. Clarke 

Hong-Biao Chu ${ }^{\text {a, }}$, Ning-Hua Tan ${ }^{\text {a }}$, and Yu-Mei Zhang ${ }^{\text {a }}$<br>${ }^{\text {a }}$ State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China<br>${ }^{\mathrm{b}}$ Graduate School of the Chinese Academy of Sciences, Beijing 100039, China<br>Reprint requests to Prof. Dr. Ning-Hua Tan or Dr. Yu-Mei Zhang. Fax: +86-871-5223800.<br>E-mail: nhtan@mail.kib.ac.cn; zymei@mail.kib.ac.cn<br>Z. Naturforsch. 2007, 62b, 1465 -1470; received June 5, 2007<br>One new ionone glycoside, pedicurexoside (1), one new flavonoid, 5, $4^{\prime}$-dihydroxy- $3^{\prime}$-methoxy-flavone-7- $O-6^{\prime \prime}-n$-butyryl- $\beta$-D-glucopyranoside (2), two new iridoid glycosides, 6- $O$-ethyl-aucubin (7), 6-O-ethyl-epiaucubin (8), and one new phenylpropanoid glycoside, 4-hydroxy-phenylpropenyl-$\alpha$-L-rhamnopyranosyl-( $1 \rightarrow 3$ )-4- $O$ - feruloyl- $\beta$-D-glucopyranoside (13), together with eleven known compounds, apigenin (3), luteolin (4), chrysoeriol (5), luteolin-7-O- $\beta$-D-glucopyranoside (6), aucubin (9), yuheinoside (10), euphroside (11), mussaenoside (12), verbascoside (14), martynoside (15) and isomartynoside (16), were isolated from Pedicularis rex. The structures of $\mathbf{1 - 1 6}$ were elucidated mainly by 1D and 2D NMR techniques, MS evidence and chemical methods. The ionone derivative with thirteen carbon atoms was found in Pedicularis plants for the first time.

Key words: Scrophulariaceae, Pedicularis rex, Pedicurexoside, Flavonoid, Iridoid

## Introduction

Pedicularis L. is widely distributed in the world, comprising about 300 species in China [1]. Some species of this genus are used to treat diseases [2]. Up to now, many types of compounds have been isolated from Pedicularis species, such as iridoids, phenylpropanoids and flavonoids etc. [3]. Pedicularis rex C. B. Clarke (Scrophulariaceae) is used as a folk medicine for the treatment of measles, chronic hepatitis and rheumatism paralysis [4]. However, there has been no report on its chemical constituents. In this paper, we report the structure elucidation of five new compounds, 1, 2, 7, $\mathbf{8}$ and 13, from this plant (Fig. 1).

## Results and Discussion

Compound 1 was obtained as a white amorphous powder. The $\mathrm{FAB}^{-}$-MS spectrum gave a quasimolecular ion peak at $m / z=385[\mathrm{M}-1]^{-}$and the HR-TOF-MS suggested a molecular formula of $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{8}$ $\left(m / z=385.1866\right.$, calcd. 385.1862, [M-1] ${ }^{-}$). The IR spectrum ( KBr ) showed characteristic absorption bands at 3418,1651 and $1606 \mathrm{~cm}^{-1}$ assignable to hydroxyl and $\alpha, \beta$-unsaturated carbonyl groups. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (see Table 1 ) of $\mathbf{1}$ revealed the presence of three methyls [ $\delta=1.14,1.82,2.31$ (all $\mathrm{s}, \mathrm{H}-12,13,10)$ ], three methylenes $[\delta=1.29(\mathrm{t}, J=$
$12.1 \mathrm{~Hz}), 2.24(\mathrm{~m}), \mathrm{H}-2 ; 2.06(\mathrm{dd}, J=17.4,9.5 \mathrm{~Hz})$, 2.43 (dd, $J=17.5,5.3 \mathrm{~Hz}$ ), H-4; 3.43 (d, $J=9.7 \mathrm{~Hz}$ ), $3.79(\mathrm{~d}, J=9.7 \mathrm{~Hz}), \mathrm{H}-11$ ], one methine bearing an oxygen function [ $\delta=4.10(\mathrm{~m}), \mathrm{H}-3]$, and one transolefin $[\delta=6.14,7.34$ (both d, $J=16.4 \mathrm{~Hz}, \mathrm{H}-8,7$ )], together with a $\beta$-glucopyranosyl group [ $\delta=4.22$ (d, $\left.\left.J=7.8 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)\right]$. The acid hydrolysis of $\mathbf{1}$ with $5 \%$ aqueous HCl liberated D-glucose. The aglycon $1 \mathbf{1 a}$ was obtained by enzymatic hydrolysis of $\mathbf{1}$ with cellulase. The structure of $\mathbf{1}$ was confirmed by ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY and HMBC experiments.

The ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY experiment on $\mathbf{1}$ indicated the presence of the partial structures written in bold lines, and in the HMBC experiment long-range correlations were observed between the following protons and carbons: $\mathrm{H}-2, \mathrm{H}-11, \mathrm{H}-12$ and $\mathrm{C}-1 ; \mathrm{H}-11$ and $\mathrm{C}-2 ; \mathrm{H}-2$, $\mathrm{H}-4$ and $\mathrm{C}-3 ; \mathrm{H}-4, \mathrm{H}-13$ and $\mathrm{C}-5 ; \mathrm{H}-7, \mathrm{H}-12, \mathrm{H}-13$ and $\mathrm{C}-6 ; \mathrm{H}-7, \mathrm{H}-8, \mathrm{H}-10$ and $\mathrm{C}-9$; $\mathrm{H}-1^{\prime}$ and $\mathrm{C}-11$ (Fig. 2). Comparison of the ${ }^{13} \mathrm{C}$ NMR spectra of 1 with 1 a shows that the signal of $\mathrm{C}-1$ was shifted upfield by 2.5 ppm , and the one of $\mathrm{C}-11$ downfield by 7.2 ppm , which further indicated that $\beta$-D-glucose linked at $\mathrm{C}-11$. The relative configuration of $\mathbf{1}$ was determined by a ROESY experiment, in which correlations were observed between $\mathrm{H}-3$ and H-11 (Fig. 2), suggesting that $\mathrm{H}-3$ and $\mathrm{H}-11$ are in the same orientation. The negative optical rotations of $\mathbf{1}$ and $\mathbf{1 a}\left[[\alpha]_{\mathrm{D}}^{29}=-69.5^{\circ}(c=\right.$









Fig. 1. Compounds $\mathbf{1 - 1 6}$.

|  |  |  |  |  |
| :---: | :--- | :--- | :--- | :--- |
| No. | $\boldsymbol{\delta}_{\mathrm{C}}$ | $\delta_{\mathrm{H}}$ | $\mathbf{1 a}$ <br> $\delta_{\mathrm{C}}$ | $\delta_{\mathrm{H}}$ |
| 1 | $42.3(\mathrm{~s})$ |  | $44.8(\mathrm{~s})$ |  |
| 2 | $43.8(\mathrm{t})$ | $1.29(\mathrm{t}, 1 \mathrm{H}, 12.1)$ | $43.5(\mathrm{t})$ | $1.27(\mathrm{t}, 1 \mathrm{H}, 12.0)$ |
|  |  | $2.24(\mathrm{~m}, 1 \mathrm{H})$ |  | $2.27(\mathrm{~m}, 1 \mathrm{H})$ |
| 3 | $64.5(\mathrm{~d})$ | $4.10(\mathrm{~m}, 1 \mathrm{H})$ | $64.5(\mathrm{~d})$ | $4.05(\mathrm{~m}, 1 \mathrm{H})$ |
| 4 | $43.1(\mathrm{t})$ | $2.06(\mathrm{dd}, 1 \mathrm{H}, 17.4,9.5)$ | $43.2(\mathrm{t})$ | $2.06(\mathrm{dd}, 1 \mathrm{H}, 17.9,8.7)$ |
|  |  | $2.43(\mathrm{dd}, 1 \mathrm{H}, 17.5,5.3)$ |  | $2.42(\mathrm{dd}, 1 \mathrm{H}, 17.4,5.3)$ |
| 5 | $136.8(\mathrm{~s})$ |  | $136.7(\mathrm{~s})$ |  |
| 6 | $133.6(\mathrm{~s})$ |  | $133.7(\mathrm{~s})$ |  |
| 7 | $144.9(\mathrm{~d})$ | $7.34(\mathrm{~d}, 1 \mathrm{H}, 16.4)$ | $144.8(\mathrm{~d})$ | $7.30(\mathrm{~d}, 1 \mathrm{H}, 16.4)$ |
| 8 | $133.6(\mathrm{~d})$ | $6.14(\mathrm{~d}, 1 \mathrm{H}, 16.4)$ | $133.6(\mathrm{~d})$ | $6.11(\mathrm{~d}, 1 \mathrm{H}, 16.4)$ |
| 9 | $201.5(\mathrm{~s})$ |  | $201.2(\mathrm{~s})$ |  |
| 10 | $27.2(\mathrm{q})$ | $2.31(\mathrm{~s}, 3 \mathrm{H})$ | $27.2(\mathrm{q})$ | $2.29(\mathrm{~s}, 3 \mathrm{H})$ |
| 11 | $76.8(\mathrm{t})$ | $3.43(\mathrm{~d}, 1 \mathrm{H}, 9.7)$ | $69.6(\mathrm{t})$ | $3.36(\mathrm{~d}, 1 \mathrm{H}, 11.0)$ |
|  |  | $3.79(\mathrm{~d}, 1 \mathrm{H}, 9.7)$ |  | $3.45(\mathrm{~d}, 1 \mathrm{H}, 11.1)$ |
| 12 | $25.7(\mathrm{q})$ | $1.14(\mathrm{~s}, 3 \mathrm{H})$ | $25.3(\mathrm{q})$ | $1.07(\mathrm{~s}, 3 \mathrm{H})$ |
| 13 | $22.1(\mathrm{q})$ | $1.82(\mathrm{~s}, 3 \mathrm{H})$ |  |  |
| Glucose |  |  |  |  |
| $1^{\prime}$ | $104.6(\mathrm{~d})$ | $4.22(\mathrm{~d}, 1 \mathrm{H}, 7.8)$ |  |  |
| $2^{\prime}$ | $75.1(\mathrm{~d})$ | $3.19(\mathrm{~m}, 1 \mathrm{H})$ |  |  |
| $3^{\prime}$ | $78.1(\mathrm{~d})$ | $3.34(\mathrm{~m}, 1 \mathrm{H})$ |  |  |
| $4^{\prime}$ | $71.5(\mathrm{~d})$ | $3.28(\mathrm{~m}, 1 \mathrm{H})$ |  |  |
| $5^{\prime}$ | $77.8(\mathrm{~d})$ | $3.26(\mathrm{~m}, 1 \mathrm{H})$ |  |  |
| $6^{\prime}$ | $62.6(\mathrm{t})$ | $3.67(\mathrm{dd}, 1 \mathrm{H}, 11.9,5.3)$ |  |  |
|  |  | $3.87(\mathrm{dd}, 1 \mathrm{H}, 12.1,1.8)$ |  |  |

Table 1. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR ( 100 MHz ) data of $\mathbf{1}$ and $\mathbf{1 a}$ (in $\mathrm{CD}_{3} \mathrm{OD} ; J$ values in Hz in parentheses).


H-H COSY
HMBC
ROESY
Fig. 2. H-H COSY, HMBC, and ROESY correlations of 1.
$\left.\left.0.61, \mathrm{CH}_{3} \mathrm{OH}\right) ;[\alpha]_{\mathrm{D}}^{21}=-125.7^{\circ}\left(c=0.35, \mathrm{CH}_{3} \mathrm{OH}\right)\right]$ agree with the related compounds icariside $\mathrm{B}_{4}$ and deglycosyl icariside $\mathrm{B}_{4}\left[[\alpha]_{\mathrm{D}}^{25}=-79.1^{\circ}(c=0.79\right.$, $\left.\left.\mathrm{CH}_{3} \mathrm{OH}\right) ;[\alpha]_{\mathrm{D}}^{25}=-102^{\circ}\left(c=0.95, \mathrm{CHCl}_{3}\right)\right]$ reported in the literature $[5,6]$. So the structure of compound 1 was determined as $3 \beta$-hydroxy- $\beta$-ionone $11 \alpha-O-\beta$-Dglucopyranoside, which was named pedicurexoside.

Compound 2 was obtained as a yellow powder. The $\mathrm{FAB}^{-}$-MS spectrum had a quasi-molecular ion peak at $m / z=531[\mathrm{M}-1]^{-}$, and the HR-TOF-MS allowed the molecular formula of $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{12}$ to be determined $\left(\mathrm{m} / \mathrm{z}=531.1504\right.$, calcd. 531.1502, $\left.[\mathrm{M}-1]^{-}\right)$. The compound exhibited IR absorption bands at 3425 and $1630 \mathrm{~cm}^{-1}$ and UV maximum absorptions (206,

Table 2. ${ }^{1} \mathrm{H}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR ( 100 MHz ) data of 2 (in DMSO; $J$ values in Hz in parentheses).

| No | $\delta_{\mathrm{C}}$ | $\delta_{\mathrm{H}}$ | HMBC |
| :--- | ---: | :--- | :--- |
| 2 | $162.4(\mathrm{~s})$ |  | $\mathrm{H}-3, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}, \mathrm{H}-5^{\prime}$ |
| 3 | $103.5(\mathrm{~d})$ | $6.97(1 \mathrm{H}, \mathrm{s})$ |  |
| 4 | $182.0(\mathrm{~s})$ |  | $\mathrm{H}-3$ |
| 5 | $164.3(\mathrm{~s})$ |  |  |
| 6 | $99.4(\mathrm{~d})$ | $6.46(1 \mathrm{H}, \mathrm{d}, 1.9)$ | $\mathrm{H}-8,5-\mathrm{OH}$ |
| 7 | $161.2(\mathrm{~s})$ |  | $\mathrm{H}-6, \mathrm{H}-8, \mathrm{H}-1^{\prime \prime}, 5-\mathrm{OH}$ |
| 8 | $94.9(\mathrm{~d})$ | $6.86(1 \mathrm{H}, \mathrm{d}, 2.0)$ | $\mathrm{H}-6$ |
| 9 | $156.9(\mathrm{~s})$ |  | $\mathrm{H}-8$ |
| 10 | $105.5(\mathrm{~s})$ |  | $\mathrm{H}-3, \mathrm{H}-6, \mathrm{H}-8,5-\mathrm{OH}$ |
| $1^{\prime}$ | $121.3(\mathrm{~s})$ |  | $\mathrm{H}-3$ |
| $2^{\prime}$ | $110.5(\mathrm{~d})$ | $7.57(1 \mathrm{H}, \mathrm{s})$ | $\mathrm{H}-6^{\prime}$ |
| $3^{\prime}$ | $148.1(\mathrm{~s})$ |  | $\mathrm{H}-2^{\prime}, \mathrm{H}-5^{\prime}, 3^{\prime}-\mathrm{OMe}$ |
| $4^{\prime}$ | $151.0(\mathrm{~s})$ |  | $\mathrm{H}-2^{\prime}, \mathrm{H}-5^{\prime}$ |
| $5^{\prime}$ | $115.8(\mathrm{~d})$ | $6.94(1 \mathrm{H}, \mathrm{d}, 8.8)$ |  |
| $6^{\prime}$ | $120.5(\mathrm{~d})$ | $7.58(1 \mathrm{H}, \mathrm{overlapped})$ | $\mathrm{H}-3, \mathrm{H}-2^{\prime}, \mathrm{H}-5^{\prime}$ |
| $3^{\prime}-\mathrm{OMe}$ | $56.0(\mathrm{q})$ | $3.88(3 \mathrm{H}, \mathrm{s})$ |  |
| $1^{\prime \prime}$ | $99.4(\mathrm{~d})$ | $5.29(1 \mathrm{H}, \mathrm{d}, 7.2)$ | $\mathrm{H}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}$ |
| $2^{\prime \prime}$ | $72.8(\mathrm{~d})$ | $3.30(1 \mathrm{H}, \mathrm{m})$ |  |
| $3^{\prime \prime}$ | $75.2(\mathrm{~d})$ | $4.16(1 \mathrm{H}, \mathrm{m})$ | $\mathrm{H}-2^{\prime \prime}$ |
| $4^{\prime \prime}$ | $71.2(\mathrm{~d})$ | $3.41(1 \mathrm{H}, \mathrm{m})$ | $\mathrm{H}-3^{\prime \prime}$ |
| $5^{\prime \prime}$ | $75.5(\mathrm{~d})$ | $3.34(1 \mathrm{H}, \mathrm{m})$ |  |
| $6^{\prime \prime}$ | $64.4(\mathrm{t})$ | $4.07(2 \mathrm{H}, \mathrm{m})$ | $\mathrm{H}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}$ |
| $1^{\prime \prime \prime}$ | $168.6(\mathrm{~s})$ |  | $\mathrm{H}-6^{\prime \prime}$ |
| $2^{\prime \prime \prime}$ | $30.0(\mathrm{t})$ | $1.53(2 \mathrm{H}, \mathrm{m})$ | $\mathrm{H}-6^{\prime \prime}$ |
| $3^{\prime \prime \prime}$ | $18.4(\mathrm{t})$ | $1.29(2 \mathrm{H}, \mathrm{m})$ | $\mathrm{H}-6^{\prime \prime}, \mathrm{H}-1^{\prime \prime}, \mathrm{H}-2^{\prime \prime}$ |
| $4^{\prime \prime \prime}$ | $13.4(\mathrm{q})$ | $0.81(3 \mathrm{H}, \mathrm{t}, 7.4)$ | $\mathrm{H}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}$ |

269 and 342 nm ), which were characteristic of a flavonoid. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (see

Table 3. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR ( 100 MHz ) data of $\mathbf{7 , 8} \mathbf{8}$ and $\mathbf{9}$ (in $\mathrm{CD}_{3} \mathrm{OD} ; J$ values in Hz in parentheses).

|  | 7 |  | 8 |  | 9 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | $\delta_{\text {C }}$ | $\delta_{\text {H }}$ | $\delta_{\text {C }}$ | $\delta_{\text {H }}$ | $\delta_{\text {C }}$ | $\delta_{\text {H }}$ |
| 1 | 97.3(d) | 4.99(overlapped) | 98.2(d) | 5.06(d, 1H, 7.1) | 97.7(d) | 4.98(d, 1H, 7.1) |
| 3 | 141.6(d) | 6.28(dd, 1H, 6.1, 1.8) | 142.7(d) | 6.38(dd, 1H, 6.2, 1.7) | 141.6(d) | $6.33(\mathrm{dd}, 1 \mathrm{H}, 6.1,1.8)$ |
| 4 | 105.9(d) | 5.01(overlapped) | 102.6(d) | 4.91(dd, 1H, 6.1, 3.9) | 105.7(d) | 5.12 (dd, 1H, 6.1, 3.9) |
| 5 | 43.2(d) | 2.76 (m, 1H) | 40.9(d) | 2.91(m, 1H) | 46.2(d) | 2.68(m, 1H) |
| 6 | 90.6(d) | $4.21(\mathrm{~m}, 1 \mathrm{H})$ | 84.9(d) | 4.38(overlapped) | 82.8(d) | 4.46 (m, 1H) |
| 7 | 127.5(d) | 5.85(d, 1H, 1.4) | 128.2(d) | 5.91(s, 1H) | 130.3(d) | 5.79 (br s, 1H) |
| 8 | 149.2(s) |  | 150.5(s) |  | 148.0(s) |  |
| 9 | 47.9(d) | $2.90(t, 1 \mathrm{H}, 6.9)$ | 47.7(d) | 2.63(t, 1H, 7.0) | 47.9(d) | 2.92(t, 1H, 7.3) |
| 10 | 61.3(t) | 4.16(d, 1H, 15.9) | 61.5(t) | 4.18(d, 1H, 11.8) | 61.4(t) | 4.19(d, 1H, 15.4) |
|  |  | 4.34(d, 1H, 15.9) |  | 4.39 (overlapped) |  | 4.37(d, 1H, 15.3) |
| 11 | 65.8(t) | $3.59(\mathrm{~m}, 2 \mathrm{H})$ | 66.0(t) | $3.53(\mathrm{~m}, 1 \mathrm{H})$ |  |  |
|  |  |  |  | 3.60(overlapped) |  |  |
| 12 | 15.8(q) | 1.19(t, 3H, 7.1) | 15.7(q) | 1.14(t, 3H, 7.0) |  |  |
| Glucose |  |  |  |  |  |  |
| $1^{\prime}$ | 99.8(d) | 4.66(d, 1H, 7.9) | 100.0(d) | 4.67(d, 1H, 7.9) | 99.9(d) | 4.70(d, 1H, 7.9) |
| $2^{\prime}$ | 74.9(d) | $3.21(\mathrm{~m}, 1 \mathrm{H})$ | 75.0(d) | $3.21(\mathrm{~m}, 1 \mathrm{H})$ | 74.9(d) | 3.24(t, 1H, 8.1) |
| $3^{\prime}$ | 78.3(d) | $3.28(\mathrm{~m}, 1 \mathrm{H})$ | 78.2(d) | $3.27(\mathrm{~m}, 1 \mathrm{H})$ | 78.2(d) | $3.29(\mathrm{~m}, 1 \mathrm{H})$ |
| $4^{\prime}$ | 71.6(d) | $3.30(\mathrm{~m}, 1 \mathrm{H})$ | 71.6(d) | $3.30(\mathrm{~m}, 1 \mathrm{H})$ | 71.5(d) | $3.39(\mathrm{~m}, 1 \mathrm{H})$ |
| $5^{\prime}$ | 77.9(d) | $3.27(\mathrm{~m}, 1 \mathrm{H})$ | 77.9(d) | $3.38(\mathrm{~m}, 1 \mathrm{H})$ | 77.9(d) | 3.34 (m, 1H) |
| $6^{\prime}$ | 62.7(t) | 3.63 (overlapped) | 62.7(t) | 3.66(overlapped) | 62.6(t) | 3.67 (dd, 1H, 12.0, 5.3) |
|  |  | $3.85(\mathrm{~d}, 1 \mathrm{H}, 11.9)$ |  | 3.83(d, 1H, 11.5) |  | $3.88(\mathrm{~d}, 1 \mathrm{H}, 11.6)$ |

Table 2) for 2 revealed the presence of two methyls, three methylenes, 11 methines and 10 quaternary carbon atoms, in which signals of a D-glucose, a methoxy and a butyryl group were observed. The anomeric proton of the glucose at $\delta=5.29(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz})$ suggested that the glucose was in $\beta$-orientation. The ${ }^{1} \mathrm{H}$ NMR spectra showed typical signals $\left[\delta_{\mathrm{H}}=6.97\right.$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 6.46(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}, \mathrm{H}-6), 6.86(1 \mathrm{H}$, $\mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-8), 7.57\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}\right), 6.94(1 \mathrm{H}, \mathrm{d}$, $\left.J=8.8 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 7.58(1 \mathrm{H}$, overlapped)] of a luteolinlike flavone skeleton [7]. In the HMBC spectrum (see Table 2), the correlations between $\delta_{\mathrm{H}}=5.29(1 \mathrm{H}, \mathrm{d}$, $J=7.2 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}$ of Glc) and $\delta_{\mathrm{C}}=161.2(\mathrm{C}-7)$ suggested that the $\beta$-D-glucose is linked at $\mathrm{C}-7$, and the correlations between $\delta_{\mathrm{H}}=3.88(3 \mathrm{H}, \mathrm{s},-\mathrm{OMe})$ and $\delta_{\mathrm{C}}=148.1\left(\mathrm{C}-3^{\prime}\right)$, and $\delta_{\mathrm{H}}=4.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime \prime}\right)$ and $\delta_{\mathrm{C}}=168.6\left(\mathrm{C}-1^{\prime \prime \prime}\right)$ indicated that methoxy and butyryl groups are linked at $\mathrm{C}-3^{\prime}$ and $\mathrm{C}-6^{\prime \prime}$, respectively. From the above results, compound 2 was determined to be 5, $4^{\prime}$-dihydroxy- $3^{\prime}$-methoxyflavone-7- $O-6^{\prime \prime}$-n-butyryl-$\beta$-D-glucopyranoside.

Compounds 7 and $\mathbf{8}$ were obtained as white amorphous powders. The $\mathrm{FAB}^{-}$-MS spectrum gave the same quasi-molecular ion peak at $m / z=373[\mathrm{M}-1]^{-}$ and the HR-TOF-MS provided the same molecular formula of $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{9}(\mathrm{~m} / \mathrm{z}=373.1490$ and 373.1500 , calcd. 373.1498, $[\mathrm{M}-1]^{-}$). The IR spectrum ( KBr ) of compounds $\mathbf{7}$ and $\mathbf{8}$ showed characteristic absorption
bands due to hydroxyls ( $3429 ; 3425 \mathrm{~cm}^{-1}$ ), double bonds ( $1644 ; 1642 \mathrm{~cm}^{-1}$ ), and ether functions (1077, 1044,$1014 ; 1079,1049,1018 \mathrm{~cm}^{-1}$ ). It was evident from the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (see Table 3) that both 7 and 8 contained an ethyl moiety, and that both were very similar to aucubin. Comparing the ${ }^{13} \mathrm{C}$ NMR spectrum of 7 with that of aucubin (9) (see Table 3), C-6 showed a significant downfield shift ( +7.8 ppm ), suggesting that the position of the ethyl group was at $\mathrm{C}-6$, and the HMBC correlation of $\delta_{\mathrm{H}}=3.59(2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-11)$ to $\delta_{\mathrm{C}}=90.6$ (C-6) confirmed the above results. Moreover, the difference between compound $\mathbf{8}$ and 6epiaucubin [8] (downfield shift $+8.8 \mathrm{ppm}, \mathrm{C}-6$ ) was identical with that of compound 7 and aucubin, indicating that the ethyl group is linked to C-6. In the HMBC spectrum of $\mathbf{8}$, the correlation between $\delta_{\mathrm{H}}=$ $3.53(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11), 3.60(1 \mathrm{H}$, overlapped, $\mathrm{H}-11)$ and $\delta_{\mathrm{C}}=84.9(\mathrm{C}-6)$ proved the ethyl group in $\mathbf{8}$ to be also linked to C-6. Thus, compound 7 was determined to be 6-O-ethyl-aucubin and $\mathbf{8}$ to be 6-O-ethyl-epiaucubin.

Compound 13 was obtained as a white amorphous powder. The $\mathrm{FAB}^{-}$-MS spectrum gave a quasimolecular ion peak at $m / z=633[\mathrm{M}-1]^{-}$and the HR-TOF-MS provided a molecular formula of $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{14}$ $\left(m / z=633.2197\right.$, calcd. 633.2183, $\left.[M-1]^{-}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 3}$ revealed the presence of two methyls, two methylenes, 21 methines and six quaternary carbon atoms and indicated that $\mathbf{1 3}$ was a phen-
ylpropenyl diglycoside (glucose and rhamnose) with a feruloyl group. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals of the acyl moiety of $\mathbf{1 3}$ were similar to those of martynoside [9]. In the NMR spectra, the signal of a 4-hydroxyphenylpropenyl group was observed. In the HMBC spectrum, long-range correlations were observed between the following protons and carbons: $\delta_{\mathrm{H}}=4.44$ $\left(1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right.$ of Glc) and $\delta_{\mathrm{C}}=71.3(\mathrm{C}-9)$, $\delta_{\mathrm{H}}=4.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime \prime}\right.$ of Glc) and $\delta_{\mathrm{C}}=168.4(\mathrm{C}=\mathrm{O})$, and $\delta_{\mathrm{H}}=5.19\left(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime \prime}\right.$ of Rha) and $\delta_{\mathrm{C}}=81.6$ (C-3" of Glc), indicating that phenylpropenyl, feruloyl, and rhamonosyl groups are linked with $\mathrm{C}-1^{\prime \prime}, \mathrm{C}-4^{\prime \prime}, \mathrm{C}-3^{\prime \prime}$ of the glucose, respectively. On the basis of the above analysis, $\mathbf{1 3}$ was identified as 4-hydroxy-phenylpropenyl- $\alpha$-L-rhamnopyran-osyl-( $1 \rightarrow 3$ )-4-O-feruloyl- $\beta$-D-glucopyranoside.

By MS, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, eleven known compounds were determined to be present: apigenin (3) [10], luteolin (4) [7], chrysoeriol (5) [11], luteolin-$7-O-\beta$-D-glucopyranoside (6) [12], aucubin (9) [13], yuheinoside (10) [14], euphroside (11) [15], mussaenoside (12) [16], verbascoside (14) [17], martynoside (15) [9], and isomartynoside (16) [18].

## Experimental Section

General
Optical rotations were measured with a Horbia SEAP-300 polarimeter. IR spectra were obtained on a Bio-Rad FTS135 spectrophotometer with KBr pellets. UV spectra were taken on a Shimadzu 2401PC spectrophotometer. FAB-MS and HR-TOF-MS were recorded on a VG Auto Spec-3000 spectrometer. 1D- and 2D-NMR spectra were recorded on Bruker AM-400 and DRX-500 spectrometers with TMS as internal standard. Column chromatography was performed over silica gel (200-300 mesh, Qingdao Marine Chemical Inc., China) and Sephedax LH-20 ( $25-100 \mu \mathrm{~m}$, Pharmacia Fine Chemical Co., Ltd., Sweden), respectively.

## Plant material

The plant material was collected in Zhong Dian, Yunnan Province of China in August 2004 and identified by Prof. Wang Hong, Kunming Institute of Botany, Chinese Academy of Sciences. The voucher specimen (KUN 0473556) was deposited in the herbarium of Kunming Institute of Botany, Chinese Academy of Sciences.

## Extraction and isolation

Dried whole plant material ( 11 kg ) of $P$. rex was extracted with $95 \%$ ethanol three times (each for one week) at r.t. After concentration of the combined extracts under reduced
pressure, the residue was dissolved in hot water and extracted successively with petroleum ether and $n$-BuOH. The $n$ - BuOH portion was divided into 5 fractions (Frs. 1-5) over a silica gel column eluted with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(30: 1)$ followed by increasing concentrations of MeOH . Fr. 2 was separated further by CC on silica gel and Sephadex LH-20 to give compounds $3(100 \mathrm{mg}), 4(40 \mathrm{mg})$ and $5(50 \mathrm{mg})$. Fr. 3 was purified by repeated CC and Sephadex LH-20 to obtain $\mathbf{1}(80 \mathrm{mg}), \mathbf{9}(31 \mathrm{mg}), \mathbf{1 0}(13 \mathrm{mg}), \mathbf{1 1}(9 \mathrm{mg}), \mathbf{1 2}(38 \mathrm{mg})$, $\mathbf{1 3}(6 \mathrm{mg})$, $\mathbf{1 4}(300 \mathrm{mg})$, and two mixture fractions (Fr. A and B). Fr. A was then purified by HPLC (Zorbax ODS$\left.\mathrm{C} 18, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 1: 4\right)$ to afford compounds $7(8 \mathrm{mg})$ and $\mathbf{8}(9 \mathrm{mg})$. Compounds $\mathbf{1 5}(500 \mathrm{mg})$ and $\mathbf{1 6}(10 \mathrm{mg})$ were obtained from Fr. B by HPLC (Zorbax ODS-C18, $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, 2:3). Fr. 5 was subjected to chromatography over Sephadex LH-20 to give compounds $2(6 \mathrm{mg})$ and $\mathbf{6}(14 \mathrm{mg})$.

## Acid hydrolysis of 1

A solution of $\mathbf{1}(5 \mathrm{mg})$ in $5 \%$ aqueous HCl was heated under reflux for 6 h . After cooling, the reaction mixture was neutralized with an aqueous $\mathrm{NaHCO}_{3}$ solution. Then, the solution was extracted with EtOAc. The aqueous layer was subjected to TLC analysis. Identification of D-glucose present in the aqueous layer was carried out by comparison of its $R_{\mathrm{f}}$ shift with that of an authentic sample.

## Enzymatic hydrolysis of $\mathbf{1}$ with cellulase

A solution of $\mathbf{1}(12 \mathrm{mg})$ in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was treated with cellulase ( 12 mg ) and the solution was stirred at r.t. for 12 h . Then, the solution was extracted with EtOAc. The EtOAc portion was subjected to chromatography over silica gel to obtain $\mathbf{1 a}(7 \mathrm{mg})$.

Pedicurexoside (1): white amorphous powder. $-[\alpha]_{\mathrm{D}}^{29}=$ $-69.5^{\circ}\left(c=0.61, \mathrm{CH}_{3} \mathrm{OH}\right) .-\mathrm{UV}(\mathrm{MeOH}): ~ \lambda(\log \varepsilon)=203$ (3.81), 291 (3.77), 364 (1.97) nm. - IR (KBr): $v=3418$, 2920, 2877, 1651, 1606, 1368, 1079, $1040 \mathrm{~cm}^{-1} . \mathrm{D}^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) and ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) data are shown in Table 1. - $\mathrm{FAB}^{-}-\mathrm{MS}: m / z(\%)=385(100)$ $[\mathrm{M}-1]^{-}$. - HR-TOF-MS: $m / z=385.1866$ (calcd. 385.1862 for $\left.\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{8},[\mathrm{M}-1]^{-}\right)$.

Aglycon (la): white amorphous powder. $-[\alpha]_{\mathrm{D}}^{21}=$ $-125.7^{\circ}$ ( $c=0.35, \mathrm{CH}_{3} \mathrm{OH}$ ) $-{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\mathrm{CD}_{3} \mathrm{OD}$ ) and ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) data are shown in Table 1. $-\mathrm{FAB}^{+}-\mathrm{MS}: m / z(\%)=225(100)[\mathrm{M}+1]^{+}$.

5,4'-Dihydroxy- $3^{\prime}$-methoxyflavone-7-O- $6^{\prime \prime}$ - $n$-butyryl- $\beta$ -D-glucopyranoside (2): yellow powder. $-[\alpha]_{\mathrm{D}}^{29}=-24.95^{\circ}$ $\left(c=0.80, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right) .-\mathrm{UV}(\mathrm{MeOH}): \lambda(\log \varepsilon)=206$ (4.11), 269 (3.61), 342 (3.63) nm. - IR (KBr): $v=3425,2926$, 1630, 1384, $1175 \mathrm{~cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , DMSO) and ${ }^{13} \mathrm{C}$ NMR ( 100 MHz , DMSO) data are shown in Table 2. - $\mathrm{FAB}^{-}$-MS: $m / z(\%)=531$ (89) $[\mathrm{M}-1]^{-}, 299$ (100). - HR-TOF-MS: $m / z=531.1504$ (calcd. 531.1502 for $\left.\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{O}_{12},[\mathrm{M}-1]^{-}\right)$.

6-O-Ethyl-aucubin (7): white amorphous powder. -$[\alpha]_{\mathrm{D}}^{26}=-121.2^{\circ}\left(c=0.61, \mathrm{CH}_{3} \mathrm{OH}\right) .-\mathrm{IR}(\mathrm{KBr}): v=3429$, 2922, 1644, 1340, 1077, 1044, $1014 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) and ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ data are shown in Table 3. $-\mathrm{FAB}^{-}-\mathrm{MS}: m / z=373[\mathrm{M}-1]^{-}$. -HR -TOF-MS: $m / z=373.1490$ (calcd. 373.1498 for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{9}$, [M-1] ${ }^{-}$).

6-O-Ethyl-epiaucubin (8): white amorphous powder. -$[\alpha]_{\mathrm{D}}^{26}=-75.0^{\circ}\left(c=0.39, \mathrm{CH}_{3} \mathrm{OH}\right) .-\mathrm{IR}(\mathrm{KBr}): v=3425$, 2923, 2345, 1642, 1226, 1079, 1049, $1018 \mathrm{~cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) and ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ data are shown in Table 3. $-\mathrm{FAB}^{-}-\mathrm{MS}: m / z=373[\mathrm{M}-1]^{-} .-\mathrm{HR}-$ TOF-MS: $m / z=373.1500$ (calcd. 373.1498 for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{9}$, $[\mathrm{M}-1]^{-}$).

Aucubin (9): white amorphous powder. $-[\alpha]_{\mathrm{D}}^{26}=-162.2^{\circ}$ $\left(c=0.59, \mathrm{H}_{2} \mathrm{O}\right) .-{ }^{1} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ data are shown in Table 3. -$\mathrm{FAB}^{-}-\mathrm{MS}: m / z(\%)=345[\mathrm{M}-1]^{-}$.

Yuheninoside (10): white amorphous powder. $-[\alpha]_{\mathrm{D}}^{29}=$ $-130.9^{\circ}\left(c=0.58, \mathrm{CH}_{3} \mathrm{OH}\right)$.

Euphroside (11): white amorphous powder. $-[\alpha]_{\mathrm{D}}^{29}=$ $-106.4^{\circ}\left(c=0.33, \mathrm{CH}_{3} \mathrm{OH}\right)$.

Mussaenoside (12): white amorphous powder. $-[\alpha]_{\mathrm{D}}^{26}=$ $-111.1^{\circ}\left(c=0.94, \mathrm{CH}_{3} \mathrm{OH}\right)$.

4-Hydroxy-phenylpropenyl- $\alpha$-L-rhamnopyranosyl-( $1 \rightarrow$ 3)-4-O-feruloyl- $\beta$-D-glucopyranoside (13): white amorphous powder. $-[\alpha]_{\mathrm{D}}^{28}=-68.0^{\circ}\left(c=0.62, \mathrm{CH}_{3} \mathrm{OH}\right)$. - UV $(\mathrm{MeOH}): \lambda(\log \varepsilon)=204$ (4.53), 271 (4.10), 298 (4.10), 327 (4.19) nm. - IR (KBr): $v=3431,2928,1630,1603,1515$,

1269, $1035 \mathrm{~cm}^{-1} .-{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta_{\mathrm{H}}=$ $1.09\left(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, \mathrm{H}^{\prime \prime} 6^{\prime \prime \prime}\right), 3.40-4.52(9 \mathrm{H}, \mathrm{m}, \mathrm{H}$ of sugar), $3.87(3 \mathrm{H}, \mathrm{s},-\mathrm{OMe}), 4.44\left(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right)$, $4.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime \prime}\right), 5.19\left(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime \prime}\right), 6.22(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-8), 6.34(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, \mathrm{H}-\alpha), 6.56(1 \mathrm{H}, \mathrm{d}, J=$ $15.7 \mathrm{~Hz}, \mathrm{H}-7), 6.72(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-3,5), 6.78(1 \mathrm{H}, \mathrm{d}$, $\left.J=8.2 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 7.06\left(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 7.17(1 \mathrm{H}, \mathrm{d}$, $\left.J=1.6 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 7.26(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-2,6), 7.65(1 \mathrm{H}$, d, $J=15.8 \mathrm{~Hz}, \mathrm{H}-\beta) .-{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta_{\mathrm{C}}=$ 129.7 (s, C-1), 128.9 (d, C-2), 116.4 (d, C-3), 158.6 (s, C-4), 116.4 (d, C-5), 128.9 (d, C-6), 134.3 (d, C-7), 123.2 (d, C-8), 71.3 (t, C-9), 126.9 ( $\mathrm{s}, \mathrm{C}-1^{\prime}$ ), 111.8 (d, C-2'), 149.8 ( $\mathrm{s}, \mathrm{C}-3^{\prime}$ ), 152.4 ( $\mathrm{s}, \mathrm{C}-4^{\prime}$ ), 116.8 (d, C-5'), 124.6 (d, C-6 ${ }^{\prime}$ ), 114.4 (d, $\mathrm{C}-\alpha), 148.1$ (d, C- $\beta$ ), 168.4 (s, C=O), 56.4 ( $\mathrm{q},-\mathrm{OMe}$ ), 103.1 (d, C-1"), 76.1 (d, C-2"), 81.6 (d, C-3"), 70.7 (d, C-4"), 76.2 (d, C-5"), 62.5 ( $\mathrm{t}, \mathrm{C}-6^{\prime \prime}$ ), 103.0 (d, C- $\left.1^{\prime \prime \prime}\right), 72.4$ (d, C-2 ${ }^{\prime \prime \prime}$ ), 72.1 (d, C-3 ${ }^{\prime \prime \prime}$ ), 73.8 (d, C-4"'), 70.4 (d, C-5 ${ }^{\prime \prime \prime}$ ), 18.4 (q, $\left.\mathrm{C}^{-6}{ }^{\prime \prime \prime}\right) .-\mathrm{FAB}^{-}-\mathrm{MS}: m / z(\%)=633(30)[\mathrm{M}-1]^{-} .-$HR-TOF-MS: $m / z=633.2197$ (calcd. 633.2183 for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{O}_{14}$, $[\mathrm{M}-1]^{-}$).

## Acknowledgements

This work was supported by the Foundation of Chinese Academy Sciences (West Light Program) and the National Natural Science Foundation of China (30572258). The authors are grateful to interns Jian-Qiong Xie (Guiyang Medical College, Guiyang, Guizhou, China) and Jia-Xing Zhu (Guiyang College of Traditional Chinese Medicine, Guiyang, Guizhou, China) for experimental help.
[1] C.S. Qian, H. Y. Chen, Flora Republicae Popularis Sinicae, Vol. 68, Science Press, Beijing, 1963, pp. 2.
[2] Jiangshu New Medical College, Chinese Medicine Dictionary, Shanghai People's Publishing House, Shanghai Science and Technology Press, Shanghai, 1977, pp. 286.
[3] Z. Wu, F. R. Li, J. X. Yang, Lishizhen Med. Materia Med. Res. 2002, 13, 305-307.
[4] Jiangshu New Medical College, Chinese Medicine Dictionary, Shanghai People's Publishing House, Shanghai Science and Technology Press, Shanghai, 1977, pp. 1108.
[5] T. Miyase, A. Ueno, N. Takizawa, H. Kobayashi, H. Oguchi, Chem. Pharm. Bull. 1987, 35, $3713-$ 3719.
[6] G. Appendino, H. C. Ozen, R. Enriu, L. Barboni, B. Gabetta, G. F. Zini, Fitoterapia 1993, 64, 396-398.
[7] J. Shen, J. Liang, S. L. Peng, L. S. Ding, Natural Product Research and Development 2004, 16, 391-394.
[8] L. Yang, C. G. Wang, Z. J. Jia, Phytochemistry 1995, 40, 491-494.
[9] A. Yamamoto, S. Nitta, T. Miyase, A. Ueno, L. J. Wu, Phytochemistry 1993, 32, 421-425.
[10] L. Liang, C. Y. Liu, G. Y. Li, L. E. Lu, Y. C. Cai, Acta. Pharm. Sinica 1996, 31, 122-125.
[11] D. M. Song, Q. S. Sun, Chinese Journal of Medicinal Chemistry 2004, 14, 233-235.
[12] Y. L. Ren, J. S. Yang, Chin. Pharm. J. 2001, 36, 590 593.
[13] A. Bianco, D. Bolli, P. Passacantilli, Gazz. Chim. Ital. 1981, 111, 479-481.
[14] Y. Ozaki, S. Johne, M. Hesse, Helv. Chim. Acta. 1979, 62, 2708-2711.
[15] S. Otto, S. Osama, Helv. Chim. Acta. 1981, 64, 78-81.
[16] C. A. Boros, F. R. Stermitz, J. Nat. Prod. 1990, 53, 1055-1147.
[17] H. Sasaki, H. Nishimura, M. Chin, H. Mitsuhashi, Phytochemistry 1989, 28, 875-879.
[18] I. Calis, M.F. Lahloub, E. Rogenmoser, O. Sticher, Phytochemistry 1984, 23, 2313-2315.

