Transition Metal-Indium Substitution in $\mathbf{Y}_{\mathbf{3}} \mathbf{R} \mathbf{h}_{\mathbf{2}}$-type Compounds

Roman Zaremba ${ }^{\text {a }}$, Ute Ch. Rodewald ${ }^{\text {a }}$, Vasyl' I. Zaremba ${ }^{\text {b }}$, and Rainer Pöttgen ${ }^{\text {a }}$
${ }^{\text {a }}$ Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, 48149 Münster, Germany
${ }^{\text {b }}$ Inorganic Chemistry Department, Ivan Franko National University of Lviv, Kyryla and Mephodiya Street 6, 79005 Lviv, Ukraine

Reprint requests to R. Pöttgen. E-mail: pottgen@ uni-muenster.de
Z. Naturforsch. 2007, 62b, 1397 - 1406; received May 25, 2007

New rare earth metal-rich indium compounds $R E_{3} T_{2-x} \mathrm{In}_{x}(R E=\mathrm{Gd}, \mathrm{Tb}, \mathrm{Dy}, \mathrm{Ho}, \mathrm{Er}, \mathrm{Tm} ; T=$ Rh, Pd, Ir) were synthesized from the elements via high-frequency melting and subsequent annealing in sealed silica ampoules. These intermetallics crystallize with substitution variants of the tetragonal $\mathrm{Y}_{3} \mathrm{Rh}_{2}$-type structure, space group $I 4 / \mathrm{mcm}, Z=28$. All samples were studied by powder and single crystal X-ray diffraction: $a=1164.2(2), c=2486.5(5) \mathrm{pm}$, for $\mathrm{Tb}_{3} \mathrm{Rh}_{1.25} \mathrm{In}_{0.71}, a=1139.4$ (2), $c=2480.8(5) \mathrm{pm}$ for $\mathrm{Er}_{3} \mathrm{Rh}_{1.48} \mathrm{In}_{0.52}, a=1153.7(2), c=2465.4(5) \mathrm{pm}$ for $\mathrm{Tm}_{3} \mathrm{Rh}_{1.25} \mathrm{In}_{0.71}, a=$ 1146.4(2), $c=2498.4(5) \mathrm{pm}$ for $\mathrm{Tb}_{3} \operatorname{Ir}_{1.62} \mathrm{In}_{0.33}, a=1154.9(2), c=2500.1(5) \mathrm{pm}$ for $\mathrm{Tb}_{3} \mathrm{Ir}_{1.52} \mathrm{In}_{0.44}$, $a=1187.8(2), c=2559.2(5) \mathrm{pm}$ for $\mathrm{Gd}_{3} \mathrm{Pd}_{1.27} \mathrm{In}_{0.71}$, and $a=1169.1(2), c=2530.3(5) \mathrm{pm}$ for $\mathrm{Ho}_{3} \mathrm{Pd}_{1.27} \mathrm{In}_{0.71}$. The indium atoms show different site occupancies on the transition metal positions, and for most crystals small defects occur for one transition metal site. $\mathrm{Gd}_{3} \mathrm{Rh}_{1.30} \mathrm{In}_{0.64}(a=$ 1166.3(2), $c=2512.0(5) \mathrm{pm}$) and $\mathrm{Dy}_{3} \mathrm{Rh}_{1.31} \mathrm{In}_{0.64}$ reveal complete rhodium-indium ordering. These two indides crystallize with the translationengleiche subgroup $I 4 / \mathrm{m}$. The rare earth atoms in these $R E_{3} \mathrm{~T}_{2-x} \mathrm{In}_{x}$ indides have coordination numbers between 13 and 15 . A striking structural motif is the tetrahedral indium coordination in the first coordination sphere of the RE5 position ($305 \mathrm{pm} \mathrm{Gd}-\mathrm{In}$ in $\mathrm{Gd}_{3} \mathrm{Rh}_{1.30} \mathrm{In}_{0.64}$). The transition metal atoms show trigonal prismatic or square anti-prismatic rare earth coordination. In all compounds investigated, the indium atoms substitute these metals only at the square prismatic sites and at one site of coordination number 10 . The crystal chemical consequences of the different ordered and statistical transition metal-indium substitutions are discussed.

Key words: Indium, Intermetallics, Crystal Chemistry

Introduction

During our recent phase analytical investigations of the rare earth metal-rich parts of the rare earth metal $(R E)$-rhodium-indium systems we characterized the series of $R E_{4} \mathrm{RhIn}\left(\mathrm{Gd}_{4} \mathrm{RhIn}\right.$-type, space group $F \overline{4} 3 m)$ [1] and $R E_{14} \mathrm{Rh}_{3} \mathrm{In}_{3}\left(\mathrm{Lu}_{14} \mathrm{Co}_{3} \mathrm{In}_{3}\right.$-type, space group $P 4_{2} / n m c$) [2] indides. In both structure types, the rhodium atoms have trigonal prismatic rare earth coordination. These $\operatorname{Rh} R E_{6}$ prisms are condensed via common edges and corners, leading to three-, respectively two-dimensional networks. Such trigonal prismatic units also occur in the $R E_{2} \mathrm{Rh}_{2}$ In indides $\left(\mathrm{Mo}_{2} \mathrm{Fe}_{2} \mathrm{~B}\right.$-type, space group $\left.P 4 / \mathrm{mbm}\right)[3,4]$. The trigonal prisms in these indides are condensed via a common rectangular face, leading to an AlB_{2} related slab with Rh-Rh bonds.

In the rhodium-based systems, the $R E_{4}$ RhIn, $R E_{14} \mathrm{Rh}_{3} \mathrm{In}_{3}$, and $R E_{2} \mathrm{Rh}_{2} \mathrm{In}$ indides are pure ternary compounds. There are no binary rare earth-rhodium
compounds with related structures which would allow a substitution by indium. This is different for the palladium series. The $R E_{2} \mathrm{Pd}_{2} \mathrm{In}$ indides [5] are derived from the binary compounds $R E_{3} \mathrm{Pd}_{2}[6]$ by an ordered substitution at the $2 a$ rare earth position by indium. Herein we report on a different substitution pattern. The binary compounds $R E_{3} R h_{2}$ [7] and $R E_{3} \mathrm{Ir}_{2}$ [8] (all $\mathrm{Y}_{3} \mathrm{Rh}_{2}$-type, space group $14 / \mathrm{mcm}$) have six crystallographically independent transition metal sites with trigonal prismatic, square prismatic, and square antiprismatic rare earth coordination. The square prismatic and one of the square antiprismatic sites show significant rhodium (iridium)/indium substitution, leading to ternary indides $R E_{3} \operatorname{Ir}_{2-x} \mathrm{In}_{x}$. Although the $R E_{3} \mathrm{Pd}_{2}$ compounds crystallize with another structure type, the $\mathrm{Y}_{3} \mathrm{Rh}_{2}$-type has also been observed for some indides $R E_{3} \operatorname{Pd}_{2-x} \mathrm{In}_{x}$. The preparation and structure refinements of $\mathrm{Gd}_{3} \mathrm{Rh}_{1.30} \mathrm{In}_{0.64}$, $\mathrm{Tb}_{3} \mathrm{Rh}_{1.25} \mathrm{In}_{0.71}, \quad \mathrm{Dy}_{3} \mathrm{Rh}_{1.31} \mathrm{In}_{0.64}, \quad \mathrm{Er}_{3} \mathrm{Rh}_{1.48} \mathrm{In}_{0.52}$, $\mathrm{Tm}_{3} \mathrm{Rh}_{1.25} \mathrm{In}_{0.71}, \quad \mathrm{~Tb}_{3} \mathrm{Ir}_{1.62} \mathrm{In}_{0.33}, \quad \mathrm{~Tb}_{3} \mathrm{Ir}_{1.52} \mathrm{In}_{0.44}$,
$\mathrm{Gd}_{3} \mathrm{Pd}_{1.27} \mathrm{In}_{0.71}$, and $\mathrm{Ho}_{3} \mathrm{Pd}_{1.27} \operatorname{In}_{0.71}$ are reported herein.

Experimental Section

Synthesis
Starting materials for the preparation of the $R E_{3} \mathrm{Rh}_{2-x} \mathrm{In}_{x}$, $R E_{3} \mathrm{Pd}_{2-x} \mathrm{In}_{x}$ and $R E_{3} \mathrm{Ir}_{2-x} \mathrm{In}_{x}$ samples were ingots of the rare earth metals (smart elements, Johnson Matthey), rhodium, palladium, and iridium powder or granules (Heraeus or Degussa-Hüls), and indium tear drops (Chempur), all with stated purities better than 99.9%. Pieces of the respective rare earth and transition metal and pieces of the indium tear drops were mixed in the atomic ratios listed in Table 1 and arc-melted [9] three times under argon pressure of $c a .600 \mathrm{mbar}$. The argon was purified over molecular sieves, silica gel and titanium sponge (900 K). Alternatively the elements can be inductively melted in small glassy carbon crucibles (Sigradur ${ }^{\circledR} \mathrm{G}$) in a high-frequency furnace (Hüttinger Elektronik, Freiburg, Typ TIG 1.5/300) [10]. Light-gray polycrystalline samples were obtained which are stable in air over months.

Single crystals of the compounds $R E_{3} \mathrm{Rh}_{2-x} \mathrm{In}_{x}(R E=$ $\mathrm{Gd}-\mathrm{Dy}, \mathrm{Tm}$), $\mathrm{Gd}_{3} \mathrm{Pd}_{1.27} \mathrm{In}_{0.71}$, and $\mathrm{Ho}_{3} \mathrm{Pd}_{1.27} \mathrm{In}_{0.71}$ were grown via a special heat treatment. First, the inductionmelted samples were powdered and cold-pressed into pellets of 6 mm diameter. Next, the samples were placed in small tantalum containers that were sealed in evacuated silica tubes as an oxidation protection. The ampoules were first heated within 6 h to a maximum value of $1295-1355 \mathrm{~K}$ and kept at that temperature for another 6 h . Subsequently, the temperature was lowered at a rate of $5 \mathrm{~K} \mathrm{~h}^{-1}$ to 970 K in all cases, then at a rate of $15 \mathrm{~K} \mathrm{~h}^{-1}$ to 670 K , and finally the samples were cooled to r.t. by switching off the furnace. After cooling, the samples could easily be separated from the tantalum containers. No reaction of the samples with tantalum was detected. Single crystals of irregular shape were selected. The single crystals of $\mathrm{Er}_{3} \mathrm{Rh}_{1.48} \mathrm{In}_{0.52}, \mathrm{~Tb}_{3} \mathrm{Ir}_{1.62} \mathrm{In}_{0.33}$, and $\mathrm{Tb}_{3} \mathrm{Ir}_{1.52} \mathrm{In}_{0.44}$ were selected directly from the samples obtained by high-frequency melting.

The single crystals investigated on the diffractometer and the bulk samples were analyzed semiquantitatively by EDX in a Leica 420 I scanning electron microscope using the lanthanoid trifluorides, rhodium, palladium, iridium, and InAs as standards. The EDX analyses revealed no impurity elements, and the results were in agreement with the compositions refined from the single crystal data.

X-Ray powder and single crystal data

The $R E_{3} \mathrm{Rh}_{2-x} \mathrm{In}_{x}, R E_{3} \mathrm{Pd}_{2-x} \mathrm{In}_{x}$ and $R E_{3} \mathrm{Ir}_{2-x} \mathrm{In}_{x}$ samples were studied by X-ray powder diffraction (Guinier technique) using $\mathrm{Cu} K_{\alpha 1}$ radiation and α-quartz ($a=491.30, c=$ 540.46 pm) as an internal standard. The Guinier camera was

Table 1. Lattice parameters for $R E_{3} T_{2-x} \mathrm{In}_{x}$ compounds with tetragonal $\mathrm{Y}_{3} \mathrm{Rh}_{2}$-type and related structures.

Compound	$a(\mathrm{pm})$	$c(\mathrm{pm})$	$V\left(\mathrm{~nm}^{3}\right)$	Reference
Rhodium compounds:				
$\mathrm{Gd}_{3} \mathrm{Rh}_{1.30(1)} \mathrm{In}_{0.64(1)}{ }^{\text {a }}$	1166.3(2)	2512.0(5)	3.4170	this work
$6 \mathrm{Gd}: 2 \mathrm{Rh}: 1 \mathrm{In}^{\text {b }}$	1171(5)	2514(9)	3.4473	this work
$\mathrm{Gd}_{3} \mathrm{Rh}_{2}$	1127(1)	2532(2)	3.2160	[7]
$\mathrm{Tb}_{3} \mathrm{Rh}_{1.25(1)} \mathrm{In}_{0.71}{ }^{\text {a }}$	1164.2(2)	2486.5(5)	3.3701	this work
$4 \mathrm{~Tb}: 1 \mathrm{Rh}: 1 \mathrm{In}^{\text {b }}$	1170.5(8)	2491(2)	3.4128	this work
$\mathrm{Tb}_{3} \mathrm{Rh}_{2}$	1125(1)	2520(2)	3.1893	[7]
$\mathrm{Dy}_{3} \mathrm{Rh}_{1.31(1)} \mathrm{In}_{0.64(1)}{ }^{\text {a }}$	1156.6(2)	2485.3(5)	3.3246	this work
6Dy: 2Rh: $1 \mathrm{In}^{\text {b }}$	1155(2)	2491(3)	3.3230	this work
$\mathrm{Dy}_{3} \mathrm{Rh}_{2}$	1116(1)	2507(2)	3.1224	[7]
$\mathrm{Er}_{3} \mathrm{Rh}_{1.48(2)} \mathrm{In}_{0.52(2)}{ }^{\text {a }}$	1139.4(2)	2480.8(5)	3.2207	this work
21Er:9Rh:5In ${ }^{\text {b }}$	1145.6(2)	2478.0(2)	3.2521	his work
$\mathrm{Er}_{3} \mathrm{Rh}_{2}$	1109(1)	2488(2)	3.0599	[7]
$\mathrm{Tm}_{3} \mathrm{Rh}_{1.25(1)} \mathrm{In}_{0.71}{ }^{\text {a }}$	1153.7(2)	2465.4(5)	3.2815	this work
4Tm : $1 \mathrm{Rh}: 1 \mathrm{In}^{\text {b }}$	1151.6(5)	2458(2)	3.2597	his work
Iridium compounds:				
$\mathrm{Tb}_{3} \mathrm{Ir}_{1.62(1)} \mathrm{In}_{0.33(1)}{ }^{\text {a }}$	1146.4(2)	2498.4(5)	3.2835	his work
$6 \mathrm{~Tb}: 3 \mathrm{Ir}: 1 \mathrm{In}^{\text {b }}$	1153.7(8)	2508(2)	3.3382	his work
$\mathrm{Tb}_{3} \mathrm{Ir}_{1.52(1)} \mathrm{In}_{0.44(1)}{ }^{\text {a }}$	1154.9(2)	2500.1(5)	3.3346	this work
21Tb:9Ir:5In ${ }^{\text {b }}$	1164.5(5)	2503(1)	3.3942	this work
$\mathrm{Tb}_{3} \mathrm{Ir}_{2}$	1120.6(3)	2504(1)	3.1444	[8]
Palladium compounds:				
$\mathrm{Gd}_{3} \mathrm{Pd}_{1.27(1)} \mathrm{In}_{0.71}{ }^{\text {a }}$	1187.8(2)	2559.2(5)	3.6107	this work
5Gd: 2Pd: $1 \mathrm{In}^{\text {b }}$	1189(1)	2552(3)	3.6078	his work
$\mathrm{Ho}_{3} \mathrm{Pd}_{1.27(1)} \mathrm{In}_{0.71}{ }^{\text {a }}$	1169.1(2)	2530.3(5)	3.4584	this work
5Ho : 2Pd: 1 $\mathrm{In}^{\text {b }}$	1169.5(5)	2530.4(9)	3.4609	this work

${ }^{\text {a }}$ Single crystal data; ${ }^{\text {b }}$ starting composition for the samples investigated by Guinier powder data.
equipped with an imaging plate system (Fujifilm BAS-1800). The tetragonal lattice parameters (Table 1) were obtained from least-squares refinements of the Guinier data. To ensure correct indexing, the experimental patterns were compared to calculated ones [11] using the atomic positions obtained from the structure refinements.

Irregularly shaped single crystals were selected from the samples after the crystal growth procedure or directly from the melted ones (see above) and first examined by Laue photographs on a Buerger precession camera (equipped with an imaging plate system Fujifilm BAS-1800) in order to establish the crystal quality. Single crystal intensity data were collected at r.t. on a Stoe IPDS-II diffractometer with graphite monochromatized $\mathrm{Mo} K_{\alpha}$ radiation (71.073 pm) in oscillation mode. Numerical absorption corrections were applied to the data sets. All relevant crystallographic data and details for the data collections and evaluations are listed in Tables 2 and 3.

The nine data sets revealed the systematic extinctions expected for a body-centered tetragonal lattice and were in agreement with the centrosymmetric space group $I 4 / \mathrm{mcm}$. The starting atomic parameters were deduced from automatic interpretations of Direct Methods with Shelxs-97 [12], and the structures were refined using SHELXL-97 (full-matrix

Table 2. Crystal data and structure refinement for $\mathrm{Gd}_{3} \mathrm{Rh}_{1.30(1)} \mathrm{In}_{0.64}, \mathrm{~Tb}_{3} \mathrm{Rh}_{1.25(1)} \mathrm{In}_{0.71}, \mathrm{Dy}_{3} \mathrm{Rh}_{1.31(1)} \mathrm{In}_{0.64}$, $\mathrm{Er}_{3} \mathrm{Rh}_{1.48(2)} \mathrm{In}_{0.52(2)}$, and $\mathrm{Tm}_{3} \mathrm{Rh}_{1.25(1)} \mathrm{In}_{0.71}, Z=28$.

Empirical formula	$\mathrm{Gd}_{3} \mathrm{Rh}_{1.30(1)} \mathrm{In}_{0.64}$	$\mathrm{Tb}_{3} \mathrm{Rh}_{1.25(1)} \mathrm{In}_{0.71}$	$\mathrm{Dy}_{3} \mathrm{Rh}_{1.31(1)} \mathrm{In}_{0.64}$	$\mathrm{Er}_{3} \mathrm{Rh}_{1.48(2)} \mathrm{In}_{0.52(2)}$	$\mathrm{Tm}_{3} \mathrm{Rh}_{1.25(1)} \mathrm{In}_{0.71}$
Molar mass, $\mathrm{g} \mathrm{mol}^{-1}$	679.86	$687.38{ }^{\text {a }}$	695.65	713.83	717.23
Crystal size, $\mu \mathrm{m}^{3}$	$30 \times 40 \times 70$	$40 \times 100 \times 250$	$20 \times 70 \times 70$	$20 \times 20 \times 100$	$20 \times 50 \times 70$
Space group	I4/m	I4/mcm	I4/m	$14 / \mathrm{mcm}$	$14 / \mathrm{mcm}$
Unit cell dimensions			see Table 1		
Calculated density, $\mathrm{g} \mathrm{cm}^{-3}$	9.25	9.48	9.73	10.31	10.16
$F(000)$, e	7902	8015	8071	8291	8350
Detector distance, mm	60	60	55	80	80
Exposure time, min	12	5	12	4	8
ω range; increment, deg	0-180; 1.0	0-180; 1.0	0-180; 1.0	0-180; 1.0	0-180; 1.0
Integr. param. A; B; EMS	14.5; 4.5; 0.014	14; 4; 0.018	14.0; 4.0; 0.012	13; 3.5; 0.014	14; 3.5; 0.012
Abs. coefficient, mm^{-1}	47.3	50.9	53.9	61.7	63.7
Transm. ratio (max/min)	2.58	6.32	6.63	4.14	10.70
θ range, deg	3-35	3-30	3-32	2-30	2-32
Range in $h \mathrm{kl}$	$\pm 18, \pm 18, \pm 40$	$\pm 15, \pm 15, \pm 34$	$\pm 17, \pm 17, \pm 36$	$\pm 16, \pm 16, \pm 34$	$\pm 17, \pm 17, \pm 36$
Total no. reflections	24843	16840	19264	16064	19107
Indep. refl.; $R_{\text {int }}$	3674; 0.053	1341; 0.043	2804; 0.044	1287; 0.094	1529; 0.061
Refl. with $I \geq 2 \sigma(I) ; R_{\sigma}$	2930; 0.028	1113; 0.024	2509; 0.024	771; 0.075	1144; 0.038
Data/parameters	3674/90	1341/54	2804/90	1287/55	1529/54
Goodness-of-fit on F^{2}	0.976	0.974	1.013	0.694	0.867
Final $R 1 ; w R 2[I \geq 2 \sigma(I)]$	0.028; 0.053	0.023; 0.045	0.024; 0.043	0.024; 0.043	0.024; 0.045
Final $R 1 ; w R 2$ (all data)	0.043; 0.057	0.033; 0.047	0.029; 0.044	0.058; 0.046	0.043; 0.047
Extinction coefficient	0.000135(5)	0.000231(7)	0.000110(4)	0.000044(3)	0.000131(4)
$\underline{\Delta \rho_{\text {fin }}(\mathrm{max} / \mathrm{min}), \mathrm{e} \AA^{-3}}$	2.23/-2.00	2.10/-2.78	1.46/-1.61	1.89/-1.85	2.13/-2.53

Table 3. Crystal data and structure refinement for $\mathrm{Tb}_{3} \mathrm{Ir}_{1.62(1)} \mathrm{In}_{0.33(1)}, \mathrm{Tb}_{3} \mathrm{Ir}_{1.52(1)} \mathrm{In}_{0.44(1)}, \operatorname{Gd}_{3} \operatorname{Pd}_{1.27(1)} \mathrm{In}_{0.71}$, and $\mathrm{Ho}_{3} \mathrm{Pd}_{1.27(1)} \mathrm{In}_{0.71}$, space group $I 4 / \mathrm{mcm}, Z=28$.

Empirical formula	$\mathrm{Tb}_{3} \mathrm{Ir}_{1.62(1)} \mathrm{In}_{0.33(1)}$	$\mathrm{Tb}_{3} \mathrm{Ir}_{1.52(1)} \mathrm{In}_{0.44(1)}$	$\mathrm{Gd}_{3} \mathrm{Pd}_{1.27(1)} \mathrm{In}_{0.71}$	$\mathrm{Ho}_{3} \mathrm{Pd}_{1.27(1)} \mathrm{In}_{0.71}$
Molar mass, $\mathrm{g} \mathrm{mol}^{-1}$	825.69	819.40	689.12	711.97
Crystal size, $\mu \mathrm{m}^{3}$	$10 \times 40 \times 70$	$40 \times 40 \times 280$	$10 \times 50 \times 160$	$20 \times 40 \times 100$
Unit cell dimensions	see Table 1			
Calculated density, $\mathrm{g} \mathrm{cm}^{-3}$	11.69	11.43	8.87	9.57
$F(000)$, e	9402	9341	7995	8244
Detector distance, mm	60	100	60	60
Exposure time, min	5	5	4	4
ω range; increment, deg	0-180; 1.0	0-180; 1.0	0-180; 1.0	0-180; 1.0
Integr. param. $\mathrm{A} ; \mathrm{B}$; EMS	13.5; 3.5; 0.012	12.5; 3.5; 0.014	13.5; 3.5; 0.012	13.5; 3.5; 0.012
Absorption coefficient, mm^{-1}	91.8	88.1	45.3	55.1
Transm. ratio (max/min)	8.72	18.50	6.32	5.74
θ range, deg	3-30	1-30	2-30	2-30
Range in hkl	$\pm 16, \pm 16, \pm 34$	$\pm 15, \pm 15, \pm 34$	$\pm 16, \pm 16, \pm 36$	$\pm 16, \pm 16, \pm 35$
Total no. reflections	16433	15524	18087	17381
Indep. reflections; $R_{\text {int }}$	1304; 0.149	1243; 0.079	1433; 0.076	1382; 0.092
Refl. with $I \geq 2 \sigma(I) ; R_{\sigma}$	768; 0.099	976; 0.039	1023; 0.048	897; 0.069
Data/parameters	1304/56	1243/56	1433/54	1382/54
Goodness-of-fit on F^{2}	0.708	0.908	0.789	0.718
Final $R 1$; wR2 $[I \geq 2 \sigma(I)]$	0.030; 0.044	0.026; 0.053	0.024; 0.041	0.023; 0.037
Final $R 1$; $w R 2$ (all data)	0.074; 0.049	0.041; 0.056	0.045; 0.044	0.052; 0.039
Extinction coefficient	0.000055(3)	0.000081(5)	0.000102(4)	0.000143(3)
$\Delta \rho_{\text {fin }}(\mathrm{max} / \mathrm{min}), \mathrm{e} \AA^{-3}$	2.67/-2.46	2.06/-2.57	1.68/-1.84	1.73/-2.29

least-squares on $F_{o}{ }^{2}$) [13] with anisotropic atomic displacement parameters for all sites. Comparison of the structures with the TYPIX database [14] readily revealed isotypism with $\mathrm{Y}_{3} \mathrm{Rh}_{2}$ [7]. All atomic parameters were then transformed to the setting originally used for the yttrium compound.

The final task of the refinements was the correct site assignment for the transition metal and indium atoms. Considering the large size of indium, occupancy of the trigonal prismatic site is unlikely. Indeed, except for $\mathrm{Er}_{3} \mathrm{Rh}_{1.48} \mathrm{In}_{0.52}$, all $T 1$ sites show only small defects. Since indium has a stronger
Table 4. Atomic coordinates and isotropic displacement parameters $\left(\mathrm{pm}^{2}\right)$ of $\mathrm{Gd}_{3} \mathrm{Rh}_{1.30(1)} \operatorname{In}_{0.64}, \mathrm{~Tb}_{3} \mathrm{Rh}_{1.25(1)} \operatorname{In}_{0.71}, \mathrm{Dy}_{3} \mathrm{Rh}_{1.31(1)} \operatorname{In}_{0.64}, \mathrm{Er}_{3} \mathrm{Rh}_{1.48(2)} \operatorname{In}_{0.52(2)}$, and
$\mathrm{Tm}_{3} \mathrm{Rh}_{1.25(1)} \operatorname{In}_{0.71}$. $\left(U_{\text {eq }}\right.$ is defined as one third of the trace of the orthogonalized U_{ij} tensor $)$.

Atom	Wyck.	Occupancy \%	x	y	z	$U_{\text {eq }}$	Atom	Wyck.	Occupancy \%	x	y	z	$U_{\text {eq }}$
$\overline{G d} 3_{3} R h^{\prime}$	${ }_{30(1)} \mathrm{In}_{0}$	in I4/m:					Dy4	$8 g$	100	0	1/2	0.10391(1)	166(1)
Gd1	$16 i$	100	0.20512(10)	0.07769(12)	0.07169(5)	146(2)	Dy5	$4 d$	100	0	1/2	1/4	278(1)
Gd1a	$16 i$	100	0.79518(10)	0.07710(11)	0.42798(5)	148(2)	Rh1	$16 i$	90.9(3)	0.31711(14)	0.81499(13)	0.10725(2)	197(2)
Gd2	$16 i$	100	0.07919(11)	0.20324(10)	0.19281(5)	178(2)	Rh2	8h	100	0.09587(14)	0.59649 (15)	0	138(1)
Gd2a	$16 i$	100	$0.92155(12)$	0.20775(10)	0.30859(5)	187(2)	Rh3	$4 e$	100	0	0	0.13166(9)	170(4)
Gd3	$8 h$	100	0.34817(15)	0.84853(15)	0	142(1)	Rh3a	$4 e$	100	0	0	0.36937 (7)	101(4)
Gd4	$8 g$	100	0	1/2	0.10437(2)	171(1)	Rh4	$4 e$	100	0	0	0.25295(11)	125(2)
Gd5	$4 d$	100	0	1/2	1/4	311(2)	Rh5	$2 b$	100	0	0	1/2	67(5)
Rh1	$16 i$	90.8(4)	0.3170(2)	0.8149(2)	0.10727(2)	198(2)	In2	$2 a$	100	0	0	0	201(6)
Rh2	$8 h$	100	0.0970(2)	0.5953(2)	0	143(1)	In1	$16 i$	100	0.15618(10)	0.65716(9)	0.18504(2)	162(1)
Rh3	$4 e$	100	0	0	0.13219(18)	139(6)	$E r_{3} R h_{\text {I.48(2) }}$ In $_{\text {O.52(2) }}$ in I4/mcm:						
Rh3a	$4 e$	100	0	0	$0.36876(18)$	144(6)	Er1	32 m	100	0.20440(5)	0.07637(5)	0.07142(2)	90(1)
Rh4	$4 e$	100	0	0	0.2509(2)	150(2)	Er2	$32 m$	100	0.07827 (5)	0.20601(5)	0.19234(2)	138(1)
Rh5	$2 b$	100	0	0	1/2	101(7)	Er3	8h	100	0.34817 (7)	$x+1 / 2$	0	83(2)
In2	$2 a$	100	0	0	0	174(8)	Er4	$8 g$	100	0	1/2	0.10486(4)	116(2)
In1	$16 i$	100	0.15606(15)	0.65687(12)	0.18495(2)	175(1)	Er5	$4 b$	100	0	1/2	1/4	220(4)
$T b_{3} R h$	25(1) ${ }^{\text {I }}$	in $14 / \mathrm{mcm}$:					Rh1	$16 l$	100	0.31666(9)	$x+1 / 2$	0.10712(5)	150(3)
Tb1	32 m	100	0.20597(3)	0.07708(3)	0.07196(1)	85(1)	Rh2	$8 h$	100	0.09617(12)	$x+1 / 2$	0	70(4)
Tb2	$32 m$	100	0.07832(3)	0.20469(3)	0.19203(1)	98(1)	Rh3	$8 f$	100	0	0	0.13139(7)	81(4)
Tb3	$8 h$	100	0.34731(4)	$x+1 / 2$	0	81(1)	Rh4	$4 a$	100	0	0	1/4	87(5)
Tb4	8 g	100	0	1/2	0.10320(2)	97(1)	In1/Rh5	$16 l$	79(6)/21(6)	0.15616(7)	$x+1 / 2$	0.18516(5)	117(4)
Tb5	$4 b$	100	0	1/2	1/4	179(2)	In2/Rh6	$4 c$	46(11)/54(11)	0	0	0	75(8)
Rh1	$16 l$	93.8(5)	0.31489(6)	$x+1 / 2$	0.10752(3)	129(3)	$\mathrm{Tm}_{3} R h_{1.25(1)}$ In $n_{0.71}$ in I4/mcm:						
Rh2	$8 h$	100	0.09561(7)	$x+1 / 2$	0	$77(2)$	Tm1	32 m	100	0.20675(3)	0.07740(3)	0.07209(1)	94(1)
Rh3	$8 f$	100	0	0	0.13128(3)	73(2)	Tm2	$32 m$	100	0.07695(3)	0.20394(3)	0.19194(1)	84(1)
Rh4	$4 a$	100	0	0	1/4	73(3)	Tm3	$8 h$	100	0.34838 (5)	$x+1 / 2$	0	95(1)
In1	$16 l$	100	0.15689(4)	$x+1 / 2$	0.18495(2)	92(1)	Tm4	$8 g$	100	0	$1 / 2$	0.10290(3)	97(1)
In2	4 c	100	0	0	0	88(3)	Tm5	$4 b$	100	0	1/2	1/4	120(2)
$D y_{3} R h_{1.31(1)}$ In $n_{0.64}$ in I4/m:							Rh1	$16 l$	93.5(6)	0.31490(6)	$x+1 / 2$	0.10750(4)	131(4)
Dy1	$16 i$	100	0.20423(7)	0.07658(6)	0.07132(3)	145(2)	Rh2	$8 h$	100	0.09555(8)	$x+1 / 2$	0	78(2)
Dyla	$16 i$	100	0.79445(7)	0.07754(7)	0.42813(3)	150(1)	Rh3	$8 f$	100	0	0	0.13045(5)	78(2)
Dy2	$16 i$	100	0.07667(7)	0.20613(7)	0.19210(3)	179(2)	Rh4	$4 a$	100	0	0	1/4	75(3)
Dy2a	$16 i$	100	0.91989(7)	0.20433(7)	0.30803(3)	171(2)	In1	$16 l$	100	0.15756(5)	$x+1 / 2$	0.18553(3)	77(1)
Dy3	8h	100	0.34813(9)	0.84772(9)	0	142(1)	In2	$4 c$	100	0	0	0	92(3)

Atom	Wyck.	Occupancy \%	x	y	z	$U_{\text {eq }}$
$\mathrm{Tb}_{3} \mathrm{Ir}_{1.62(1)} \mathrm{In}_{0.33(1)}$ in I4/mcm:						
Tb1	32 m	100	0.20503(6)	0.07542(7)	0.07196(3)	115(2)
Tb2	$32 m$	100	0.07903(8)	0.20781(7)	0.19287(4)	199(2)
Tb3	8h	100	0.34807(10)	$x+1 / 2$	0	117(3)
Tb4	$8 g$	100	0	1/2	0.10658(7)	167(4)
Tb5	$4 b$	100	0	1/2	1/4	219(6)
Ir1	$16 l$	90.8(5)	0.31778(7)	$x+1 / 2$	0.10689(5)	160(4)
Ir2	8h	100	0.09484(7)	$x+1 / 2$	0	84(3)
Ir3	$8 f$	100	0	0	0.13299(5)	82(3)
Ir4	$4 a$	100	0	0	1/4	96(4)
In1/Ir5	$16 l$	51(1)/49(1)	0.15541(6)	$x+1 / 2$	0.18544(6)	140(5)
In2/Ir6	$4 c$	25(3)/75(3)	0	0	0	93(8)
$\mathrm{Tb}_{3} \mathrm{Ir} \mathrm{r}_{1.52(I)} \mathrm{In} 0.44(\mathrm{I})$ in $14 / / \mathrm{mcm}$:						
Tb1	32 m	100	0.20539(5)	0.07583(5)	0.07206(2)	127(1)
Tb2	$32 m$	100	0.07897(5)	0.20592(5)	0.19260(2)	180(2)
Tb3	$8 h$	100	0.34793(7)	$x+1 / 2$	0	121(2)
Tb4	$8 g$	100	0	1/2	0.10458(4)	165(2)
Tb5	$4 b$	100	0	1/2	1/4	272(4)
Ir1	$16 l$	93.1(4)	0.31675(5)	$x+1 / 2$	0.10710(2)	160(2)
Ir2	8h	100	0.09509(5)	$x+1 / 2$	0	94(2)
Ir3	$8 f$	100	0	0	0.13273(3)	95(2)
Ir4	$4 a$	100	0	0	1/4	111(2)
In1/Ir5	$16 l$	66.4(9)/33.6(9)	0.15559(6)	$x+1 / 2$	0.18504(3)	146(3)
In2/Ir6	$4 c$	44(2)/56(2)	0	0	0	104(5)
$G d_{3} P d_{1.27(1)}$ In $_{0.71}$ in I4/mcm:						
Gd1	32 m	100	0.20694(4)	0.07776(4)	0.07313(2)	84(1)
Gd2	$32 m$	100	0.07778(4)	0.20840(4)	0.19350(2)	108(1)
Gd3	$8 h$	100	0.34967(5)	$x+1 / 2$	0	78(2)
Gd4	$8 g$	100	0	1/2	0.10732(3)	100(2)
Gd5	$4 b$	100	0	1/2	1/4	177(3)
Pd1	$16 l$	97.6(6)	0.31583(6)	$x+1 / 2$	0.10728(4)	107(3)
Pd2	8h	100	0.09362(8)	$x+1 / 2$	0	83(3)
Pd3	$8 f$	100	0	0	0.13360(5)	99(3)
Pd4	$4 a$	100	0	0	1/4	88(3)
In1	$16 l$	100	0.15850(5)	$x+1 / 2$	0.18507(4)	102(2)
In2	$4 c$	100	0	0	0	119(3)
$\mathrm{Ho}_{3} \mathrm{Pd}_{1.27(1)} \mathrm{In}_{0.71}$ in I4/mcm:						
Ho1	32 m	100	0.20768(4)	0.07743(4)	0.07314(2)	69(1)
Ho2	$32 m$	100	0.07747(4)	0.20760(4)	0.19363(2)	92(1)
Ho3	8h	100	0.34946(6)	$x+1 / 2$	0	63(2)
Ho4	$8 g$	100	0	1/2	0.10674(4)	80(2)
Ho5	$4 b$	100	0	1/2	1/4	148(3)
Pd1	$16 l$	97.3(6)	0.31580(7)	$x+1 / 2$	0.10741(5)	100(4)
Pd2	$8 h$	100	$0.09362(10)$	$x+1 / 2$	0	64(3)
Pd3	$8 f$	100	0	0	0.13289(6)	72(3)
Pd4	$4 a$	100	0	0	1/4	66(4)
In1	$16 l$	100	0.15781(6)	$x+1 / 2$	0.18550(4)	87(2)
In2	4 c	100	0	0	0	90(4)

Table 5. Atomic coordinates and isotropic displacement parameters $\left(\mathrm{pm}^{2}\right)$ of $\mathrm{Tb}_{3} \mathrm{Ir}_{1.62(1)} \mathrm{In}_{0.33(1)}$, $\mathrm{Tb}_{3} \mathrm{Ir}_{1.52(1)} \mathrm{In}_{0.44(1)}, \mathrm{Gd}_{3} \mathrm{Pd}_{1.27(1)} \mathrm{In}_{0.71}$, and $\mathrm{Ho}_{3} \mathrm{Pd}_{1.27(1)} \operatorname{In}_{0.71}$. $\left(U_{\text {eq }}\right.$ is defined as one third of the trace of the orthogonalized U_{ij} tensor).
scattering power than palladium and rhodium, these defects are unambiguous for the rhodium- and palladium-based compounds. For the iridium compounds, a mixed Ir/In occupancy was also possible, however, in view of the short distances to the rare earth atoms, and of the analogy to the rhodium and palladium compounds, the refinements with Ir1 defects are the correct ones.

From the other five crystallographically independent transition metal sites with higher coordination number, indium occupancy has only been observed on the $16 l$ and $4 c$ sites (Rh 2 and Rh5) of the $\mathrm{Y}_{3} \mathrm{Rh}_{2}$-type. For the different crystals investigated we have observed mixed $T / I n$ occupancy and also full indium occupancy. A special situation occurred for the crystals of $\mathrm{Gd}_{3} \mathrm{Rh}_{1.30} \mathrm{In}_{0.64}$ and $\mathrm{Dy}_{3} \mathrm{Rh}_{1.31} \mathrm{In}_{0.64}$.

Gd1:	1	Rh1	293.9	Gd2:	1	Rh1	281.1	Gd3:	2	Rh1	274.7	Rh2:	2	Gd1a	294.3
	1	Rh2	295.1		1	Rh4	293.2		1	Rh2	295.2		2	Gd1	295.1
	1	Rh3	297.6		1	Rh3	296.5		1	Rh2	297.2		1	Gd3	295.2
	1	In2	312.8		1	In1	313.3		2	Gd4	362.4		1	Gd3	297.2
	1	In1	339.4		1	In1	319.8		2	Gd1	362.9		2	Gd4	306.4
	1	Rh1	344.9		1	Gd2a	344.1		2	Gd1a	363.5	Rh3:	4	Gd2	296.5
	1	Gd2	355.0		1	Gd1	355.0		2	Gd1	368.6		4	Gd1	297.6
	1	Gdia	359.0		1	Gd2a	355.8		2	Gdia	369.8		1	Rh4	298.1
	1	Gd1	360.2		1	Gd2a	358.1	Gd4:	2	Rh1	303.7		1	In2	332.1
	2	Gd1	361.8		1	In1	359.8		2	Rh2	306.4	Rh3a:	4	Gdia	295.4
	1	Gd3	362.9		2	Gd2	359.8		2	In1	328.0		1	Rh4	296.2
	1	Gd4	365.0		1	Gd1	368.2		2	Gd3	362.4		4	Gd2a	299.9
	1	Gd2	368.2		1	Gd5	385.9		2	Gd1a	365.0		1	Rh5	329.7
	1	Gd3	368.6	Gd2a:	1	Rh1	274.1		2	Gd1	365.0	Rh4:	4	Gd2	293.2
Gd1a:	1	Rh1	292.2		1	Rh4	296.8		1	Gd5	365.8		1	Rh3a	296.2
	1	Rh2	294.3		1	Rh3a	299.9	Gd5:	4	In1	305.4		4	Gd2a	296.8
	1	Rh3a	295.4		1	In1	315.7		2	Gd4	365.8		1	Rh3	298.1
	1	Rh5	312.9		1	In1	317.5		4	Gd2a	382.4	Rh5:	8	Gdia	312.9
	1	In1	339.8		1	Gd2	344.1		4	Gd2	386.0		2	Rh3a	329.7
	1	Rh1	341.1		1	Gd1a	350.5	Rh1:	1	Gd2a	274.1	In1:	1	Gd5	305.4
	1	Gd2a	350.5		1	Gd2	355.8		1	Gd3	274.7		1	Gd2	313.3
	1	Gd1	359.0		1	Gd2	358.1		1	Gd2	281.1		1	Gd2a	315.7
	2	Gd1a	361.0		1	In1	360.0		1	Gd1a	292.2		1	Gd2a	317.5
	1	Gdia	361.8		2	Gd2a	366.3		1	Gd1	293.9		1	Gd2	319.8
	1	Gd3	363.5		1	Gdia	367.3		1	Gd4	303.7		1	Rh1	327.5
	1	Gd4	365.0		1	Gd5	382.4		1	In1	327.5		1	Gd4	328.0
	1	Gd2a	367.3						1	Gd1a	341.1		1	Gd1	339.4
	1	Gd3	369.8						1	Gd1	344.9		1	Gd1a	339.8
													,	Gd2	359.8
													1	Gd2a	360.0
												In2:	8	Gd1	312.8
													2	Rh3	332.1

Table 6. Interatomic distances (pm), calculated with the powder lattice parameters of $\mathrm{Gd}_{3} \mathrm{Rh}_{1.30(1)} \mathrm{In}_{0.64}$ in space group $I 4 / m$. (Standard deviations are all equal to or less than 0.3 pm . All distances within the first coordination spheres are listed).

$\mathrm{Y}_{3} \mathrm{Rh}_{2}$	Y1		Y2		Y3	Y4	Y5	Rh1	Rh3	Rh4		Rh5		Rh6	Rh2
$\begin{gathered} \mathrm{I} 4 / \mathrm{mcm} \\ \mathrm{Gd}_{3} \mathrm{Rh}_{1.30} \mathrm{In}_{0.64} \\ \mathrm{t} 2 \\ a, b, c \end{gathered}$	Gdi: $32 m$ 1		Gd2: $32 m$		$\begin{gathered} \hline \mathrm{Gd} 3: 8 h \\ m .2 m \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Gd4: } 8 \mathrm{~g} \\ & 2 . \mathrm{mm} \end{aligned}$	$\begin{gathered} \hline \text { Gd5: } 4 b \\ \overline{4} 2 m \end{gathered}$	$\begin{gathered} \hline \text { Rh1: } 16 l \\ . . m \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{Rh} 2: 8 h \\ m .2 m \end{gathered}$	$\begin{gathered} \hline \text { Rh3: } 8 f \\ 4 . . \end{gathered}$		Rh5/In2: $4 c$ 4/m..		Rh4: $4 a$ 422	$\begin{gathered} \hline \text { Inl: } 16 \mathrm{l} \\ . . m \end{gathered}$
	0.2050 0.0774 0.0719		10.0789 0.2055 0.1921		0.3484 $\mathrm{x}+1 / 2$ 0	$\begin{gathered} \hline 0 \\ 1 / 2 \\ 0.1044 \end{gathered}$	$\begin{gathered} 0 \\ 1 / 2 \\ 1 / 4 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.3159 \\ x+1 / 2 \\ 0.1073 \\ \hline \end{gathered}$	$\begin{gathered} 0.0962 \\ x+1 / 2 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 0.1317 \end{gathered}$		0 0 0		0 0 $1 / 4$	$\begin{aligned} & \hline 0.1565 \\ & x+1 / 2 \\ & 0.1850 \\ & \hline \end{aligned}$
a, b, c			\downarrow		\downarrow	\downarrow	\downarrow	\downarrow	\downarrow					\downarrow	\downarrow
$\begin{gathered} I 4 / m \\ \text { calculated } \end{gathered}$	$\begin{gathered} \text { Gd1: } 16 i \\ 1 \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \text { Gdla: } 16 i \\ 1 \\ \hline \end{array}$	$\begin{gathered} \hline \text { Gd2: } 16 i \\ 1 \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \text { Gd2a: } 16 i \\ 1 \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{Gd} 3: 8 h \\ m . . \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Gd4: } 8 \mathrm{~g} \\ 2 . . \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Gd5: } 4 d \\ \overline{4} . . \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Rh1: } 16 i \\ 1 \end{gathered}$	$\begin{gathered} \text { Rh2: } 8 h \\ m . . \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{Rh} 3: 4 e \\ 4 . . \\ \hline \end{gathered}$	$\text { Rh3a: } 4 e$ 4..	$\begin{aligned} & \hline \operatorname{In} 2: 2 b \\ & 4 / m . . \\ & \hline \end{aligned}$	$\begin{gathered} \text { Rh5: } 2 a \\ 4 / m . . \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Rh4: } 4 e \\ 4 . . \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { In1: } 16 i \\ 1 \\ \hline \end{gathered}$
	0.2050 0.0774 0.0719	$\begin{aligned} & 0.7950 \\ & 0.0774 \\ & 0.4281 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0789 \\ & 0.2055 \\ & 0.1921 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.9211 \\ & 0.2055 \\ & 0.3079 \\ & \hline \end{aligned}$	$\begin{gathered} 0.3484 \\ 0.8484 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 1 / 2 \\ 0.1044 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 \\ 1 / 2 \\ 1 / 4 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.3159 \\ & 0.8159 \\ & 0.1073 \\ & \hline \end{aligned}$	$\begin{gathered} 0.0962 \\ 0.5962 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 0.1317 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 \\ 0 \\ 0.3683 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ 1 / 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 \\ 0 \\ 0.2500 \\ \hline \end{gathered}$	$\begin{aligned} & 0.1565 \\ & 0.6565 \\ & 0.1850 \\ & \hline \end{aligned}$
14/m refined	$\begin{gathered} \text { Gd1: } 16 i \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { Gd1a: } 16 i \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { Gd2: } 16 i \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { Gd2a: } 16 i \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { Gd3: } 8 h \\ m . . \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Gd4: } 8 \mathrm{~g} \\ 2 . . \end{gathered}$	$\begin{aligned} & \hline \text { Gd5: } 4 d \\ & \overline{4} . . \end{aligned}$	$\begin{gathered} \text { Rh1: } 16 i \\ 1 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{RR} 2: \\ & \mathrm{R} \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Rh3: } 4 e \\ 4 . . \end{gathered}$	Rh3a: $4 e$ 4.	$\begin{gathered} \hline \text { In2: } 2 b \\ 4 / m . . \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Rh5: } 2 a \\ 4 / m . . \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Rh4: } 4 e \\ 4 . . \\ \hline \end{gathered}$	$\begin{gathered} \text { In1: } 16 i \\ 1 \end{gathered}$
	$\begin{aligned} & 0.2051 \\ & 0.0777 \\ & 0.0717 \end{aligned}$	$\begin{aligned} & 0.7952 \\ & 0.0771 \\ & 0.4280 \end{aligned}$	$\begin{aligned} & 0.0792 \\ & 0.2032 \\ & 0.1928 \end{aligned}$	$\begin{aligned} & 0.9216 \\ & 0.2078 \\ & 0.3086 \end{aligned}$	$\begin{aligned} & \hline 0.3482 \\ & 0.8485 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 1 / 2 \\ 0.1044 \end{gathered}$	$\begin{gathered} 0 \\ 1 / 2 \\ 1 / 4 \end{gathered}$	$\begin{aligned} & 0.3170 \\ & 0.8149 \\ & 0.1073 \end{aligned}$	$\begin{gathered} 0.0970 \\ 0.5953 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 \\ 0 \\ 0.1322 \end{gathered}$	$\begin{gathered} \hline 0 \\ 0 \\ 0.3688 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 00 \\ 0 \\ 1 / 2 \end{gathered}$	$\begin{gathered} \hline 0 \\ 0 \\ 0.2509 \end{gathered}$	$\begin{aligned} & 0.1561 \\ & 0.6569 \\ & 0.1850 \end{aligned}$

Fig. 1. Group-subgroup scheme in the Bärnighausen formalism [16-18] for the structures of $\mathrm{Y}_{3} \mathrm{Rh}_{2}$ [7] and $\mathrm{Gd}_{3} \mathrm{Rh}_{1.30} \mathrm{In}_{0.64}$. The index for the translationengleiche symmetry reduction (t) and the evolution of the atomic parameters are also shown.

Refinement of the occupancy parameters revealed a 50% $\mathrm{Rh} / 50 \% \mathrm{In}$ occupancy for the $4 c$ site. This allows an ordering in a lower symmetry space group. Consequently we have refined both structures in the translationengleiche subgroup of index 2 (t2) $I 4 / m$ [15]. While switching from
high to low Laue symmetry, we observed twinning via the matrix ($010,100,00-1$) and batch scale factors of $c a$. 0.5 . The corresponding group-subgroup scheme in the Bärnighausen formalism [16-18] and the evolution of the atomic parameters are presented in Fig. 1.

All other sites were fully occupied within two standard uncertainties. Final difference Fourier syntheses revealed no significant residual peaks (see Tables 2 and 3). The positional parameters and interatomic distances (exemplary for $\mathrm{Gd}_{3} \mathrm{Rh}_{1.30} \mathrm{In}_{0.64}$) are listed in Tables 4, 5, and 6.

Further details of the crystal structure investigations may be obtained from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: +49-7247-808-666; e-mail: crysdata@fiz-karlsruhe.de, http://www.fizinformationsdienste.de/en/DB/icsd/depot_anforderung.html) on quoting the deposition numbers CSD-418098 $\left(\mathrm{Gd}_{3}-\right.$ $\left.\mathrm{Rh}_{1.30} \mathrm{In}_{0.64}\right)$, CSD-418099 $\left(\mathrm{Tb}_{3} \mathrm{Rh}_{1.25} \mathrm{In}_{0.71}\right)$, CSD-418100 $\left(\mathrm{Dy}_{3} \mathrm{Rh}_{1.31} \mathrm{In}_{0.64}\right)$, CSD-418101 $\left(\mathrm{Er}_{3} \mathrm{Rh}_{1.48} \mathrm{In}_{0.52}\right)$, CSD$418097\left(\mathrm{Tm}_{3} \mathrm{Rh}_{1.25} \mathrm{In}_{0.71}\right)$, CSD-418104 $\left(\mathrm{Tb}_{3} \operatorname{Ir}_{1.62} \mathrm{In}_{0.33}\right)$, CSD-418105 ($\mathrm{Tb}_{3} \mathrm{Ir}_{1.52} \mathrm{In}_{0.44}$), CSD-418102 $\left(\mathrm{Gd}_{3} \mathrm{Pd}_{1.27}\right.$ $\left.\mathrm{In}_{0.71}\right)$, and CSD-418103 $\left(\mathrm{Ho}_{3} \mathrm{Pd}_{1.27} \operatorname{In}_{0.71}\right)$.

Discussion

Nine new ternary indides $R E_{3} T_{2-x} \mathrm{In}_{x}$ with $T=\mathrm{Rh}$, Pd , Ir with differently substituted variants of the tetragonal $\mathrm{Y}_{3} \mathrm{Rh}_{2}$-type structure [7], space group $14 / \mathrm{mcm}$, have been synthesized and structurally characterized on the basis of single crystal diffractometer data. This structural arrangement has so far only been observed for a series of gallides $R E_{3}\left(\mathrm{Ga}_{x} \mathrm{Ni}_{1-x}\right)_{2}$ with $R E=\mathrm{Dy}$, $\mathrm{Ho}, \mathrm{Er}, \mathrm{Tm}, \mathrm{Lu}$ [19]. The structures of the gallides have been studied on the basis of powder X-ray diffraction, and nickel-gallium mixing has been reported at five sites for the $\mathrm{Er}_{3}\left(\mathrm{Ga}_{x} \mathrm{Ni}_{1-x}\right)_{2}$ structure with $x=0.35-$ 0.50 .

The coordination polyhedra for this series of compounds are exemplarily shown for $\mathrm{Tm}_{3} \mathrm{Rh}_{1.25} \mathrm{In}_{0.71}$ in Fig. 2. The structure contains five crystallographically independent thulium sites with coordination numbers ranging from 13 to 15 . Only the Tm3 atoms have exclusively thulium and rhodium atoms in their coordination shell. All other thulium atoms have also indium neighbors. A peculiar situation occurs for the Tm5 coordination. Four In1 atoms in tetrahedral coordination at Tm5-In1 of 302 pm are the nearest neighbors. These Tm-In distances are even slightly shorter than the sum of the covalent radii of 306 pm [20]. We can thus consider a first and a second coordination sphere for the Tm5 atoms.

The $\mathrm{Tm}-\mathrm{Tm}$ distances cover the large range from 337 to 416 pm . In contrast to hcp thulium (Tm-Tm distances: 6×354 and $6 \times 366 \mathrm{pm}$) [21], we observe even shorter $\mathrm{Tm}-\mathrm{Tm}$ distances in this ternary compound, indicating strong $\mathrm{Tm}-\mathrm{Tm}$ bonding. Similar short $\mathrm{Tm}-\mathrm{Tm}$ contacts also occur in

Fig. 2. Coordination polyhedra in the structure of $\mathrm{Tm}_{3} \mathrm{Rh}_{1.25} \mathrm{In}_{0.71}$. The thulium, rhodium, and indium atoms are drawn as grey, filled, and open circles, respectively. Atom designations and site symmetries are indicated.
the thulium-rich compounds $\mathrm{Tm}_{14} \mathrm{Rh}_{3} \mathrm{In}_{3}(340 \mathrm{pm})$ [2] and $\mathrm{Tm}_{4} \operatorname{RhIn}(341 \mathrm{pm}$) [1]. The $\mathrm{Tm}-\mathrm{Rh}$ distances in $\mathrm{Tm}_{3} \mathrm{Rh}_{1.25} \mathrm{In}_{0.71}$ cover a broad range (271 to 302 pm). The shorter ones are even shorter than the sum of the covalent radii of 281 pm [20], indicating strong covalent $\mathrm{Tm}-\mathrm{Rh}$ bonding, similar to $\mathrm{Tm}_{14} \mathrm{Rh}_{3} \mathrm{In}_{3}(270-281 \mathrm{pm} \mathrm{Tm}-\mathrm{Rh})$ [2] and $\mathrm{Tm}_{4} \mathrm{RhIn}$ ($278 \mathrm{pm} \mathrm{Tm}-\mathrm{Rh}$) [1]. In the indium-rich compound $\mathrm{Tm}_{10} \mathrm{Rh}_{9} \mathrm{In}_{20}$ [22], the $\mathrm{Tm}-\mathrm{Rh}$ distances are slightly longer ($290-305 \mathrm{pm}$).

The smallest coordination number is observed for the Rh1 atoms. These atoms have a distorted trigonal prismatic thulium coordination with Rh1-Tm distances ranging from 271 to 302 pm . In general, prismatic sites are larger than antiprismatic ones. It is thus likely that the indium atoms will preferably substitute the rhodium atoms in the square prisms. This is the

Fig. 3. The crystal structure of $\mathrm{Tm}_{3} \mathrm{Rh}_{1.25} \mathrm{In}_{0.71}$. The thulium, rhodium (hidden in the prismatic units), and indium atoms are drawn as grey, filled, and open circles, respectively. The linkage of the different polyhedra is emphasized. For details see text.

Fig. 4. Rhodium-indium ordering and site occupancies in the columns of condensed square-prismatic and antiprismatic units in the structures of $\mathrm{Y}_{3} \mathrm{Rh}_{2}$, $\mathrm{Gd}_{3} \mathrm{Rh}_{1.30} \mathrm{In}_{0.64}, \mathrm{Tm}_{3} \mathrm{Rh}_{1.25} \mathrm{In}_{0.71}$, and $\mathrm{Er}_{3} \mathrm{Rh}_{1.48} \mathrm{In}_{0.52}$. Rare earth, rhodium, and indium atoms are drawn as grey, filled, and open circles, respectively. For details see text.
case for the In2 atoms. The In1 atoms have 10 nearest thulium neighbors, i.e. a higher coordination number. The rectangular face of this polyhedron built up by the Tm 1 and Tm 2 atoms corresponds to one of the rectangular faces of the Rh1 polyhedron (Fig. 2). The In1 and Rh1 polyhedra are condensed via this common face.

No T/In substitution has been observed for the square antiprisms.

The linkage of the rhodium-based polyhedra is presented in Fig. 3. At the left-hand side of this figure we have emphasized the stacking of the square prisms and antiprisms along the c axis. The space
in between is filled by the $\operatorname{Tm} 5 \operatorname{In} 1_{4}$ tetrahedra and the two-dimensional networks of condensed trigonal prisms and square antiprisms around Rh1 and Rh2, respectively. This network is emphasized at the righthand part of Fig. 3. The condensation of the trigonal prisms and square antiprisms proceeds via common edges.

The nine crystals investigated differ in the occupancy of the $T 1$ site and the $T / I n$ occupancy in the square prismatic sites at the origin of the unit cells and at $001 / 2$. In view of the short $T 1-R E$ distances, the defects on the $T 1$ sites are not unusual. Many structures of ternary rare earth-transition metal-indides feature defects for transition metal atoms on trigonal prismatic sites and this has been discussed in more detail in [22] and [23].

The different occupancy variants within the columns of condensed square prisms and antiprisms are shown in Fig. 4. While all prisms are filled with rhodium in binary $\mathrm{Y}_{3} \mathrm{Rh}_{2}$ [7], the square prisms are filled with indium in $\mathrm{Tm}_{3} \mathrm{Rh}_{1.25} \mathrm{In}_{0.71}$. This is also the case for the two palladium-based indides. In the structure of $\mathrm{Er}_{3} \mathrm{Rh}_{1.48} \mathrm{In}_{0.25}$ we observe a statistical occupancy by rhodium and indium on these sites. For $\mathrm{Gd}_{3} \mathrm{Rh}_{1.30} \mathrm{In}_{0.64}$ and $\mathrm{Dy}_{3} \mathrm{Rh}_{1.31} \mathrm{In}_{0.64}$, refinement in space group $I 4 / \mathrm{mcm}$ revealed occupancy of the $4 c$ site by $50 \% \mathrm{Rh}$ and $50 \% \mathrm{In}$. These statistics could be resolved by an ordering of rhodium and indium in the
lower symmetry space group $I 4 / m$ as discussed above, leading to a new ordered version of the $\mathrm{Y}_{3} \mathrm{Rh}_{2}$-type. In this ordered version we observe discrete stuffed cubes for the Rh5 and In2 sites which are close to a CsCl related arrangement. These coordinations also occur for the binary equiatomic compounds GdRh [24,25] and GdIn [26-28]. The Gd-Rh (298 pm) and Gd-In (329 pm) distances in the binary compounds, however, are somewhat smaller and longer (both 313 pm in $\mathrm{Gd}_{3} \mathrm{Rh}_{1.30} \mathrm{In}_{0.64}$) than in the ternary compound (Table 6). In the ordered structures of $\mathrm{Gd}_{3} \mathrm{Rh}_{1.30} \mathrm{In}_{0.64}$ and $\mathrm{Dy}_{3} \mathrm{Rh}_{1.31} \mathrm{In}_{0.64}$ we observe a small shift of the Rh 3 atoms leading to Rh3-Rh4 distances of 298 pm between two stuffed antiprisms, only slightly longer than in $f c c$ rhodium (269 pm) [21]. For comparison, the rhodium atoms in CsCl-type GdRh $[24,25]$ are well separated (344 pm). We can thus assume some weak Rh3-Rh4 bonding in the ternary compound.

Summing up, we were able to show that at two of the six crystallographically different rhodium sites in the $\mathrm{Y}_{3} \mathrm{Rh}_{2}$-type $T /$ In substitution may occur, giving rise to homogeneity ranges for all of these ternary compounds. With a 50/50 occupancy of the square prisms a new ordering variant with lower symmetry is observed.

Acknowledgement

This work was financially supported by the Deutsche Forschungsgemeinschaft.
[1] R. Zaremba, U.Ch. Rodewald, R.-D. Hoffmann, R. Pöttgen, Monatsh. Chem. 2007, 138, 523.
[2] R. Zaremba, R. Pöttgen, J. Solid State Chem. 2007, in press.
[3] F. Hulliger, J. Alloys Compd. 1995, 221, L11.
[4] D. Kaczorowski, P. Rogl, K. Hiebl, Phys. Rev. B 1996, 54, 9891.
[5] M. Lukachuk, R. Pöttgen, Z. Kristallogr. 2003, 218, 767.
[6] O. Loebich Jr., E. Raub, J. Less-Common Met. 1973, 30, 47.
[7] J.-M. Moreau, D. Paccard, E. Parthé, Acta Crystallogr. 1976, B32, 1767.
[8] J. Le Roy, J. M. Moreau, D. Paccard, E. Parthé, J. LessCommon Met. 1980, 76, 131.
[9] R. Pöttgen, Th. Gulden, A. Simon, GIT Labor Fachzeitschrift 1999, 43, 133.
[10] D. Kußmann, R.-D. Hoffmann, R. Pöttgen, Z. Anorg. Allg. Chem. 1998, 624, 1727.
[11] K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 1977, 10, 73.
[12] G. M. Sheldrick, Shelxs-97, Program for the Solution of Crystal Structures, University of Göttingen, Göttingen (Germany) 1997.
[13] G.M. Sheldrick, Shelxl-97, Program for Crystal Structure Refinement, University of Göttingen, Göttingen (Germany) 1997.
[14] E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, R. Gladyshevskii, Typix-Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, in Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed., Springer, Berlin, 1993.
[15] International Tables for Crystallography, Vol. A1, Symmetry relations between space groups, (Eds: H. Wondratschek, U. Müller), Kluwer Academic Publishers, Dordrecht, 2004.
[16] H. Bärnighausen, Commun. Math. Chem. 1980, 9, 139.
[17] H. Bärnighausen, U. Müller, Symmetriebeziehungen
zwischen den Raumgruppen als Hilfsmittel zur straffen Darstellung von Strukturzusammenhängen in der Kristallchemie, Universities of Karlsruhe and Kassel, 1996.
[18] U. Müller, Z. Anorg. Allg. Chem. 2004, 630, 1519.
[19] Yu. N. Grin, Ya.P. Yarmolyuk, E.I. Gladyshevsky, Dopov. Akad. Nauk Ukr. RSR, Ser. A 1980, 42, 80.
[20] J. Emsley, The Elements, Oxford University Press, Oxford, 1999.
[21] J. Donohue, The Structures of the Elements, Wiley, New York, 1974.
[22] M. Lukachuk, U. Ch. Rodewald, V. I. Zaremba, R.-D.

Hoffmann, R. Pöttgen, Z. Anorg. Allg. Chem. 2004, 630, 2253.
[23] M. Lukachuk, V.I. Zaremba, R.-D. Hoffmann, R. Pöttgen, Z. Naturforsch. 2004, 59b, 182.
[24] A.E. Dwight, R. A. Conner Jr., J. W. Downey, Acta Crystallogr. 1965, 18, 837.
[25] K. A. Gschneidner Jr., Acta Crystallogr. 1965, 18, 1082.
[26] N. C. Baenziger, J. L. Moriarty Jr., Acta Crystallogr. 1961, 14, 948.
[27] S. Delfino, A. Saccone, R. Ferro, Z. Metallkd. 1983, 74, 674.
[28] H. B. Lal, J. Magn. Magn. Mater. 1982, 30, 192.

