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Two hybrids between the alkaloids bauerine C and rutaecarpine were prepared. Screening for cyto-
toxic activity revealed that introduction of two chlorine substituents to the quinazolinocarboline core
of rutaecarpine strongly enhances cytotoxic activity, whereas methylation at the indole nitrogen is
detrimental to activity.
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Introduction

Polycyclic aromatic alkaloids represent a common
source of lead structures for the development of new
anticancer drugs, mainly based on their ability to in-
teract with DNA by intercalation and/or inhibition of
topoisomerases. One of the most recent successful ex-
amples is topotecan, a topoisomerase I inhibitor de-
rived from the plant alkaloid camptothecin (1) [1].
In the course of our recent investigations in order
to develop new anticancer drugs, we worked out the
first total synthesis of the 1-oxo-β -carboline alkaloid
bauerine C (2) [2]. This alkaloid has been isolated
from the blue-green alga Dichotrix baueriana, and
showed very promising cytotoxic activitiy in prelimi-
nary screenings [3]. Typical structural elements of this
alkaloid are a 1,2-dichlorobenzene ring, an untypical
N-methylindole moiety, and a pyridone ring. The cor-
responding 1-oxo-β -carboline lacking the two chloro
substituents [4] does not show significant cytotoxicity.

Another relevant example for cytotoxic polycyclic
alkaloids is the quinazolinocarboline alkaloid rutae-
carpine (3), the major alkaloid from Evodia rutaecarpa
(Rutaceae) (Fig. 1) [5]. This alkaloid has been shown
to exhibit moderate cytotoxic activitiy against several
tumor cell lines, and its ability to inhibit topoisomerase
II has been reported recently [6].

Following our concept of combining typical struc-
tural elements of known antimicrobial and cytotoxic
compounds [7] in order to find new bioactive com-
pounds we envisaged to prepare hybrids between the
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cytotoxic alkaloids bauerine C (2) and rutaecarpine (3)
as potential new anticancer agents. These hybrids can
be seen as 11,12-dichloro-rutaecarpine (7; in case the
indole nitrogen is not methylated) and as N-methyl-
11,12-dichloro-rutaecarpine (8). We were primarily in-
terested in exploring the benefit of the chloro sub-
stituents and the N-methyl group for the cytotoxic ac-
tivity of the hybrids.

A number of monohalogenated analogues of rutae-
carpine (3) have already been described as cyclooxy-
genase inhibitors by Lee et al. [8]. 10,11-Methylenedi-
oxyrutaecarpine and 11-methoxyrutaecarpine showed
cytotoxic activities superior to the native alkaloid 3 [9],
and 10-bromorutaecarpine showed a slight increase
(factor 2 – 3) in cytotoxic activity compared to alka-
loid 3, whereas the 10-methoxy analogue (identical to
the alkaloid hortiacine from Hortia arborea, Rutaceae
[10]) was found to be inactive [11]. Baruah et al. [12]
reported on the cytotoxic activity of 10-chloro deriva-
tives of rutaecarpine (3) and the related alkaloid evo-
diamine, but the results are not clear due to erroneous
molecular formulas in the publication.

Results
Chemistry

Several related strategies for the construction of
the pentacyclic quinazolinocarboline skeleton of rutae-
carpine (3) have been published over the years [5b].
Most of these approaches start from anthranilic acid
[12], anthranilic esters [13 – 15], or isatoic acid, de-
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Fig. 1. Polycyclic aromatic alka-
loids: Camptothecin (1), bauerine
C (2), rutaecarpine (3).

Scheme 1. Synthesis of the hy-
brids 7 and 8.

rived from anthranilate [12, 16, 17] as building blocks
for the quinazoline partial structure. The indole part is
most commonly introduced using tryptamine [12, 15 –
17] or by Fischer indolization [8]. Moreover, 1-oxo-
1,2,3,4-tetrahydro-β -carbolines can be applied as ver-
satile tricyclic building blocks [12 – 14].

We decided to use the last mentioned strategy, since
the dichloro-oxocarbolines 5 and 6 were already in our
hands as intermediates of our total synthesis of bauer-
ine C (2) [2] (Scheme 1). Compound 5 was conve-
niently prepared in a Japp-Klingemann reaction by cy-
clization of arylhydrazone 4 in formic acid at 80 ◦C for

24 h. Since large amounts of 6 were needed for our
present investigations, we re-examined this cyclization
and found that the reaction can be dramatically accel-
erated by microwaves [18]. Irradiation for 15 min gave
the desired product in 40 % yield when formic acid
was used as the acidic solvent. Reaction in polyphos-
phoric acid trimethylsilyl ester [19] yielded 41 %, and
finally, reaction in polyphosphoric acid 47 % of 5. N-
Methylation at the indole nitrogen atom to give 6 was
performed as described previously [2]. Both 5 and 6
were converted to the quinazolinocarbolines 7 and 8
using Lee’s protocol [14]. Thus the lactams were con-
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Compound IC50 [µ M] IC70 [µ M]
2 11.9 27.7
3 5.4 12.6
5 5.9 13.7
6 31.0 72.1
7 0.15 0.36
8 0.67 1.58

Table 1. Cytotoxic ac-
tivities of the com-
pounds on HL-60 cells
(MTT assay).

verted to their hydrochloride salts with HCl gas in
chloroform, and then to the corresponding iminochlo-
rides with POCl3. After removal of excess POCl3 the
crude products were reacted with methyl anthranilate
to give 7 and 8 in 80 and 76 % yield, respectively. Ru-
taecarpine (3) was prepared for comparison in the same
manner starting from easily available 1-oxo-1,2,3,4-
tetrahydro-β -carboline [4].

Cytotoxic activity

Quinazolinocarbolines 7 and 8, alkaloids rutae-
carpine (3) and bauerine C (2), and both building
blocks 5 and 6, related to the alkaloid bauerine C, were
tested for cytotoxic activity in a standard MTT assay
on HL-60 cells [20]. The results are presented in Ta-
ble 1.

Discussion

A convenient approach to rutaecarpine-bauerine C
hybrids 7 and 8 has been worked out. The cytotoxic ac-
tivities of these compounds were determined and com-
pared with those of the native alkaloids.

Alkaloids rutaecarpine (3) and bauerine C (2), as
well as the chlorinated oxo-β -carbolines 5 and 6
showed only poor cytotoxic activities (IC50 values be-
tween 5 and 31 µM) against HL-60 cells. In contrast,
the two hybrids 11,12-dichloro-rutaecarpine (7; IC50 =
0.15 µM) and N-methyl-11,12-dichloro-rutaecarpine
(8; IC50 = 0.67 µM) were found to exhibit high cyto-
toxic activities. Introduction of the chloro substituents
at 11- and 12-position obviously leads to a signifi-
cant increase in cytotoxic activity, whereas additional
methylation at the indole nitrogen atoms turns out to
be detrimental.

Work is in progress to screen the active hybrids 7
and 8 on a broad panel of tumor cell lines.

Experimental Section

Melting points were determined on a Büchi Melting Point
B-540 apparatus (Büchi, Flawil, Switzerland) and are uncor-
rected. NMR spectra were recorded on a Jeol JNMR-GX400
instrument (Jeol, Peabody, MA, USA). Mass spectra data

were acquired on a Hewlett Packard 5989 A mass spectrome-
ter, electronic ionization (EI) 70 eV, chemical ionization (CI)
with CH4 (300 eV), (Agilent Technologies, Palo Alto, CA,
USA). IR spectra were measured on a Jasco FT/IR-410 spec-
trometer (Jasco Inc., Easton, MD, USA). Elemental analysis
was performed on a CHN-Rapid instrument (Heraeus Hold-
ing GmbH, Hanau, Germany). All microwave experiments
were performed using a CEM Discover apparatus (CEM Cor-
poration, Matthews, NC, USA).

MTT assay: This assay was performed on HL-60 cells as
described in ref. [20]. The experiments were carried out in
triplicate with each compound.

7,8-Dichloro-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-
one (5)

0.50 g (1.84 mmol) 3-(2-(2,3-dichlorophenyl)hydrazono)-
piperidin-2-one (4) [2] and 1.0 g polyphosphoric acid were
stirred at 80 ◦C for 15 min using microwave irradiation
(20 W). After cooling the mixture was poured into ice wa-
ter (50 mL) and stirred at r. t. for 30 min. The suspension
was filtered and the residue recrystallized from EtOH to give
220 mg of 5 (47 %). The spectroscopic data were in close
agreement with literature values [2].

11,12-Dichloro-8,13-dihydro-7H-indolo[2′ ,3′ : 3,4]-
pyrido[2,1-b]quinazolin-5-one (7)

Dry HCl gas was passed into a solution of 820 mg
(3.21 mmol) 7,8-dichloro-2,3,4,9-tetrahydro-1H-pyrido[3,4-
b]indol-1-one (5) in 100 mL of CHCl3 until no further pre-
cipitation was observed. The lactam hydrochloride was col-
lected by filtration, suspended in 30 mL of POCl3 and stirred
at 50 ◦C for 2 h. Excess POCl3 was removed in vacuo and
the residue dissolved in 100 mL of anhydrous THF. 900 mg
(5.95 mmol) methyl anthranilate was added and the mix-
ture was stirred at r. t. for 12 h. Then it was poured into
80 mL of water, 100 mL of aqueous ammonia (30 %) were
added, followed by extraction with toluene/ethyl acetate
(1 : 1; 3× 100 mL). The combined organic layers were dried
over MgSO4 and the solvent was evaporated in vacuo. Re-
crystallization from toluene/ethanol afforded 916 mg (80 %)
of 7 as pale orange needles. M. p. 267 ◦C. – IR (KBr):
ν = 3377, 2929, 1655 (CO–NR2), 1599, 1560, 1471, 1306,
766 cm−1. – 1H NMR (400 MHz, [D6]DMSO): δ = 3.18 (t,
J = 6.8 Hz, 2 H, 8-H), 4.46 (t, J = 6.8 Hz, 2 H, 7-H), 7.30
(d, 3J = 8.5 Hz, 1 H, 10-H), 7.50 (ddd, 3J = 8.0 Hz, 8.0 Hz,
4J = 1.2 Hz, 1 H, 3-H), 7.67 (d, 3J = 8.5 Hz, 1 H, 9-H), 7.76
(ddd, 3J = 8.0 Hz, 4J = 1.2 Hz, 5J = 0.5 Hz, 1 H, 1-H), 7.83
(ddd, 3J = 8.0 Hz, 8.0 Hz, 4J = 1.5 Hz, 1 H, 2-H), 8.17 (ddd,
3J = 8.0 Hz, 4J = 1.5 Hz, 5J = 0.5 Hz, 1 H, 4-H), 12.28 (br.
s, 1 H, N–H). – 13C NMR (100 MHz, [D6]DMSO): δ = 18.7
(C-8), 40.4 (C-7), 115.1 (C-12), 119.3 (C-8a), 119.7 (C-9),
120.8 (C-4a), 121.6 (C-10), 125.3 (C-8b), 126.3 (C-3), 126.4
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(C-4), 126.6 (C-1), 127.1 (C-11), 129.4 (C-13a), 134.4 (C-2),
136.3 (C-12a), 144.4 (C-13b), 147.0 (C-14a), 160.4 (C=O). –
MS (CI): m/z (%) = 360 (10) [M+5]+, 358 (57) [M+3]+,
356 (100) [M+1]+. – MS (EI, 70 eV): m/z (%) = 359 (10)
[M+4]+, 357 (62) [M+2]+, 355 (100) M+. – C18H11Cl2N3O
(356.2): calcd. C 60.69, H 3.11, N 11.80; found C 60.48,
H 3.14, N 11.64.

11,12-Dichloro-8,13-dihydro-13-methyl-7H-indolo-
[2′,3′ : 3,4]pyrido[2,1-b]quinazolin-5-one (8)

This compound was prepared in the same manner
as described for 7 starting from 670 mg (2.51 mmol)
7,8-dichloro-9-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]
indol-1-one (6) and 605 mg (4.00 mmol) methyl anthrani-
late. Yield: 714 mg (77 %), as pale yellow needles after
recrystallization from toluene. M. p. 261 ◦C. – IR (KBr): ν =
3055, 2989, 2952, 2898, 2850, 1674 (CO–NR2), 1585, 1468,
1155, 766 cm−1. – 1H NMR (400 MHz, CF3COOD): δ =
3.27 (t, J = 6.3 Hz, 2 H, 8-H), 4.22 (s, 3 H, N–CH3), 4.65

(t, J = 6.3 Hz, 2 H, 7-H), 7.35 (d, 3J = 8.6 Hz, 1 H, 10-H),
7.51 (d, 3J = 8.6 Hz, 1 H, 9-H), 7.70 (t, J = 8.0 Hz, 1 H,
3-H), 7.80 (d, 3J = 8.0 Hz, 1 H, 1-H), 7.96 (t, J = 8.0 Hz,
1 H, 2-H), 8.35 (d, 3J = 8.0 Hz, 1 H, 4-H). – 13C NMR
(100 MHz, CF3COOD): δ = 21.5 (C-8), 38.1 (N–CH3),
43.7 (C-7), 119.5 (C-4a), 120.6 (C-12), 121.0 (C-1), 122.6
(C-9), 126.9 (C-13a), 127.7 (C-8b), 128.3 (C-10), 130.7
(C-4), 132.2 (C-3), 136.9 (C-8a), 138.4 (C-14a), 139.5
(C-11), 140.2 (C-2), 146.1 (C-12a), 148.2 (C-13b), 162.5
(C=O). – MS (CI): m/z (%) = 374 (11) [M+5]+, 372 (61)
[M+3]+, 370 (100) [M+1]+. – MS (EI, 70 eV): m/z (%) =
372 (17) [M+3]+, 370 (74) [M+1]+, 368 (100) [M–1]+. –
C19H13Cl2N3O (370.2): calcd. C 61.64, H 3.54, N 11.35;
found C 61.52, H 3.34, N 11.30.
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