Malonyl-4,5-dihydroniphimycin: A New Polyol Macrolide Antibiotic, Produced by *Streptomyces hygroscopicus*

Veneta Ivanova, Mariana Kolarova, and Krasja Aleksieva

The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., 26, 1113 Sofia, Bulgaria

Reprint requests to Prof. V. Ivanova. Fax: +359 2 870 01 09. E-mail: venibiva@microbio.bas.bg

Z. Naturforsch. 2007, 62b, 1187 – 1192; received January 22, 2007

Malonyl-4,5-dihydroniphimycin was isolated as a new antibiotic from the mycelium of *Streptomyces hygroscopicus* **15**. The chemical constitution was elucidated from the physico-chemical properties, using NMR techniques and mass spectrometry, to be a 36-membered macrolide related to non-polyenic antibiotics. Malonyl-4,5-dihydroniphimycin displays activity against filamentous fungi and Gram-positive bacteria.

Key words: Streptomyces hygroscopicus 15, Malonyl-4,5-dihydroniphimycin, Antifungal and Antibacterial Activity

Introduction

During the course of our screening programme for novel antifungal agents of microbial origin, we found that the *Streptomyces hygroscopicus* 15 produced a new antifungal congener of the niphimycin group.

Non-polyene antibiotics described in the literature, such as azalomycins F [1,2], scopafungin [3], niphimycin [4–6], copiamycin [7], guanidilfungins A and B [8], kanchanamycin C [9], antibiotic RS-22 A, B and C [10], malolactomycins [11], amycins A and B [12], malonylniphimycin [13], dihydroniphimycin [14] and others have similar chemical structures and antimicrobial spectra. Their structures show a macrocyclic polyhydroxyl lactone and a 6-membered innermolecular hemiacetal ring. They are malonylesters with a side chain bearing a terminal guanidine.

Here we describe the isolation, physico-chemical properties, structure elucidation and antimicrobial activity of a novel antifungal antibiotic, malonyl-4,5-dihydroniphimycin (1) (Fig. 1), produced by *Streptomyces hygroscopicus* 15.

Materials and Methods

Organism and growth conditions

The producing strain *Streptomyces hygroscopicus* 15 has been deposited in the Bulgarian National Collection of Industrial Microorganisms and Cell Cultures. The taxonomic study of the producing strain and

the procedures for growth conditions have been described in previous reports [14, 15].

General methods

UV spectra in methanol were scanned on a Perkin-Elmer (Lambda 9) UV-spectrometer; IR spectra were measured on a Bruker (IFS-66) FT-IR spectrometer in KBr tablets. FAB-MS (3-nitrobenzyl alcohol as matrix) was carried out on a Varian Mat 311-A mass spectrometer. ¹H and ¹³C NMR spectra were recorded in [D₄]MeOH on a Bruker AMX-400 NMR spectrometer at 400 MHz (¹H) and 100.62 MHz for (¹³C). ¹³C multiplicity data were obtained from JMOD experiments. Chemical shifts were expressed in ppm with TMS as an internal standard. The 2D NMR spectra were obtained by conventional methods. The optical rotation was measured at 25 °C using a Perkin-Elmer 141 polarimeter with a 1-dm cell.

Extraction and separation

After 140 h of cultivation at 30 °C, the culture broth (5.0 L of a glucose/soybean meal/NaCl/CaCO₃ medium) of *Streptomyces hygroscopicus* 15 was centrifuged. The supernatant fluid was discarded and the mycelium was extracted three times with 2.5 L of ethanol. The solvent extracts were concentrated to 400 mL and the aqueous solution was extracted with *n*-BuOH (2:1, v/v). The organic layer was concen-

0932-0776 / 07 / 0900-1187 \$ 06.00 © 2007 Verlag der Zeitschrift für Naturforschung, Tübingen ∙ http://znaturforsch.com

1H-1H COSY —

Fig. 1. Structure of malonyl-4,5-dihydroniphimycin (1).

trated in vacuo to give a crude oil. The crude product was dissolved in a small amount of MeOH, filtered and precipitated with Me₂CO/ether (10:1, v/v). An amount of 3.0 g crude product was obtained after evaporation of the solvent in vacuo. A methanolic solution of the powder (1.5 g) was chromatographed on a Silica gel 60 (70–325 mesh) column equilibrated with chloroform. Compound 1 was eluted from the column in the isocratic mode with a solvent mixture consisting of CHCl₃/MeOH/H₂O (175:125:50, v/v), as the lower phase. The complete separation and purification of 1 could be achieved only by preparative HPLC on a (250 × 5 mm) Lichroprep RP 18 column, using a gradient of 40-70 % acetonitrile in 0.01 M sodium phosphate buffer (pH = 4.0) and monitoring at 220 nm. The active fractions were concentrated and desalted on a Sephadex LH-20 column (eluant MeOH). A final purification of 1 was achieved under the same conditions on Lichroprep RP 18, using an 0.01 M sodium phosphate buffer (pH = 4.0)/acetonitrile (53:47, v/v), isocratic solvent system, $R_t = 2.09$ min. The fractions were desalted on a LH-20 column by elution with MeOH. After evaporation of the solvents in vacuo 30 mg of pure malonyl-4,5-dihydroniphimycin (1) was obtained.

Analytical HPLC

Compound 1 was analysed by HPLC using a HP 85 apparatus with a HP 1040 A UV detector. Column: Lichrospher RP 18 (125 \times 4 mm). Mobile phase: 0.01 M sodium phosphate buffer (pH = 4.0)/acetonitrile (65:35, v/v). Flow rate 1.20 mL/min; detection 220 nm; $R_t = 2.55$.

Thin-layer chromatography of compound 1 was carried out on Silica gel plates (Merck 60, F_{254}) with the following mobile phases: chloroform/methanol/water (2:2:1), lower phase, $R_f = 0.25$; chloroform/methanol/acetic acid (15:5:1), $R_f = 0.27$. The chromatographic spot was visualised by spraying with 3% vanillin/sulphuric acid solution, Draggendorff's and Sakaguchi test and heating at 110 °C for 3-5 min.

Antimicrobial activity was determined by the agar diffusion test according to European Pharmacopoia [16].

Malonyl-4,5-dihydroniphimycin (*1*). Colourless amorphous solid. – [α]_D²⁵ = +38 (c = 0.5, MeOH). – IR (KBr): v = 3401, 2962, 2932, 1727, 1602, 1461, 1381, 1292, 1142, 1049, 987, 915, 687, 588 cm⁻¹. – UV (MeOH): $\lambda_{\text{max}}(\varepsilon)$ = 226 sh, 232 (22000), 241 sh nm. – ¹H, ¹³C NMR, HMBC: see Table 1. – ¹H-¹H COSY correlations: see Fig. 1. – MS ((+)-FAB): m/z = 1230.0 [M+H]⁺. – HRMS ((+)-FAB): m/z = 1230.4900 (calcd. 1230.4860 for C₆₂H₁₀₈N₃O₂₁, [M+H]⁺).

Results and Discussion

The mycelium of the fermentation broth of *Streptomyces hygroscopicus* 15 was extracted with ethanol and the antifungal extract was purified by silica gelchromatography (CHCl₃/MeOH/H₂O,175:125:50 as the lower phase) followed by reversed-phase HPLC (sodium phosphate buffer (pH = 4.0)/acetonitrile = 53:47) to give malonyl-4,5-dihydroniphimycin (1).

Compound 1 is soluble in lower alcohols, pyridine, dimethyl sulfoxide and N,N-dimethyl formamide,

Position No H - C	-	HMBC							
2	Position	δ (¹ H)			δ (13C)	Groups			
3									
1.47 (2H, m)				C-1, C-3, C-47					
5 1,25/1,44 (2H, m) 29,47 t (2H, m) CH2 6 1,50 (1H, m) 40,00 d (HC-O-M) CH2 7 3,55 (1H, m) 37,45 t (Hc-O-M) CH2 8 1,42/1,75 (2H, m) 37,45 t (Hc-O-M) CH2 10 1,49 (1H, m) 44,80 d (Hc-O-M) CH2 11 3,80 (1H, m) 33,99 t (Hc-O-M) 33,99 t (Hc-O-M) 12 1,56/1,59 (2H, m) 33,79 t (Hc-O-M) 33,77 t (Hc-M) 13 0,99/1,21 (2H, m) C-15, C-17 41,92 t (Hc-O-M) 15 3,79 (1H, m) C-15, C-17 41,92 t (Hc-O-M) 16 1,60/1,75 (2H, m) C-15, C-17 41,92 t (Hc-O-M) 17 99,97 s (Hc-O-M) C-15, C-17 41,92 t (Hc-O-M) 18 3,53 (Hr, dd) 8,9									
6						_			
7 3.55 (IH, m) 37,30 (H, m) 77,30 d HCO- 9 3.73 (IH, m) 76,38 d HCO- 10 1.49 (IH, m) 44,80 d CH 11 3.80 (IH, m) 72,30 d HCO- 12 1.36/1.59 (2H, m) 33,99 t CH2 13 0.99/1.21 (2H, m) 37,77 t CH2 14 1.56 (IH, m) 30,50 d CH 15 3.79 (IH, m) C-17, C-50 65,78 d HCO- 16 1.60/1.75 (2H, m) C-15, C-17 41,92 t CH2 17 41,92 t CH2 CT2 CT2 CT2 18 3.53 (IH, dd) 8.9 C-17, C-19 74,20 d HCO- 20 1.21/1.81 (2H, m) C-18, C-19 38,25 t CH2 21 4.15 (1H, m) C-26 71,00 d HCO- 22 1.60/1.72 (2H, m) C-21, C-23 41.66 t CH2 23-Mal 5.16 (1H, m) C-25 71.00 d HCO- <									
8									
9									
1.49 (1H, m)						_			
12									
13	11	3.80 (1H, m)			72.30 d	HC-O-			
1.56 (1H, m)		1.36/1.59 (2H, m)			33.99 t	CH_2			
15		0.99/1.21 (2H, m)			37.77 t	CH_2			
16 1.60/1.75 (2H, m) C-15, C-17 41.92 t CH2 17 99.97 s Cq 18 3.53 (1H, dd) 8.9 C-17, C-19 74.20 d HC-O-D-Mal 20 1.21/1.81 (2H, m) C-60 74.20 d HC-O-D-Mal 21 4.15 (1H, m) C-18, C-19 38.25 t CH2 23-Mal 5.16 (1H, m) C-55 71.00 d HC-O-D-MC-D-MC-D-MC-D-MC-D-MC-D-MC-D-MC-D									
17 18 3.53 (1H, dd) 19.Mal 5.10 (1H, m) 19.Mal 5.10 (1H, m) 20 1.21/1.81 (2H, m) 21 4.15 (1H, m) 22 1.60/1.72 (2H, m) 23.Mal 5.16 (1H, m) 24 1.60/1.72 (2H, m) 25 3.77 (1H, m) 26 27 4.02 (1H, m) 28 1.33 (1H, dd) 29 21 39.40 (1H, m) 20 21 39.40 (1H, m) 30 39.40 (1H, dd) 30 5.55 (1H, dd) 40.21 (1H, m) 40.22 (1H, m) 40.21 (1H, m) 40.21 (1H, m) 40.21 (1H, m) 40.22 (1H, m) 41 (1.29 (2H, m) 42 (1H, m) 43 (1H, m) 44 (1.29 (2H, m) 45 (1.29 (1H, m) 46 (1.29 (1H, m) 47 (1.20 (1H, m) 48 (1.29 (1H, m) 49 (1.29 (1H, m) 40 (1.29 (1H, m) 40 (1.29 (1H, m) 40 (1.29 (1H, m) 41 (1.29 (2H, m) 42 (1H, m) 43 (1H, dd) 44 (1.29 (2H, m) 45 (1.29 (1H, m) 46 (1.29 (1H, m) 47 (1.20 (1H, m) 48 (1.29 (1H, m) 49 (1.29 (1H, m) 40 (1.29 (1									
18 3.53 (1H, dd) 8.9 C-17, C-19 74.20 d HC-O-19-Mal 19-Mal 5.10 (1H, m) C-60 74.20 d HC-O-20 20 1.21/1.81 (2H, m) C-18, C-19 38.25 t CH2 21 4.15 (1H, m) C-21, C-23 41.66 t CH2 22 1.60/1.72 (2H, m) C-25 71.00 d HC-O-24 24 1.60/1.72 (2H, m) C-25 41.66 t CH2 25 3.77 (1H, m) 72.38 d HC-O-26 26 1.45/1.60 (2H, m) C-25, C-27 43.46 t CH2 27 4.02 (1H, m) 69.05 d HC-O-30 HC-O-30 3.94 (1H, m) 69.05 d HC-O-30 30 5.55 (1H, dd) 10.6, 15.0 C-29, C-32 135.20 d HC- 31 6.07 (1H, dd) 10.6, 15.0 C-29, C-33 132.00 d HC- 32 5.99 (1H, dd) 10.6, 15.0 C-30, C-34 131.90 d HC- 34 2.47 (1H, m) 89, 15.1 C-31, C-32, C-33, C-35		1.60/1.75 (2H, m)		C-15, C-17					
19-Mal		2.52 (111. 11)	0.0	0.17, 0.10					
20			8.9						
21 4.15 (1H, m) C-21, C-23 41.66 t CH2 22 1.60/1.72 (2H, m) C-25 41.66 t CH2 23-Mal 5.16 (1H, m) C-55 71.00 d HC-O- 24 1.60/1.72 (2H, m) C-25 41.66 t CH2 25 3.77 (1H, m) 72.38 d HC-O- 26 1.45/1.60 (2H, m) C-25, C-27 43.46 t CH2 27 4.02 (1H, m) 69.05 d HC-O- 28 1.53 (1H, m) 45.15 d CH 29 3.94 (1H, m) C-27, C-28, C-30, C-51 75.60 d HC-O- 30 5.55 (1H, dd) 10.6, 15.0 C-29, C-32 135.20 d HC= 31 6.07 (1H, dd) 10.2, 15.0 C-29, C-33 132.00 d HC= 32 5.99 (1H, dd) 10.6, 15.0 C-30, C-34 131.90 d HC= 33 5.45 (1H, dd) 8.9, 15.1 C-31, C-35, C-52 137.15 d HC= 34 2.47 (1H, m) C-32, C-33, C-35, C-52 40.76 d CH 35 4.65 (1H, dd) 4.0, 8.1 C-1, C-34, C									
22 1.60/1.72 (2H, m)				C-10, C-19					
23-Mal 5.16 (1H, m) C-55 41.66 t CH ₂ 24 1.60/1.72 (2H, m) C-25 41.66 t CH ₂ 25 3.77 (1H, m) 72.38 d HC-O- 26 1.45/1.60 (2H, m) C-25, C-27 43.46 t CH ₂ 27 4.02 (1H, m) 69.05 d HC-O- 28 1.53 (1H, m) 45.15 d CH 29 3.94 (1H, m) C-27, C-28, C-30, C-51 75.60 d HC-O- 30 5.55 (1H, dd) 10.6, 15.0 C-29, C-32 135.20 d HC= 31 6.07 (1H, dd) 10.6, 15.0 C-29, C-33 132.00 d HC= 32 5.99 (1H, dd) 10.6, 15.0 C-30, C-34 131.90 d HC= 33 5.45 (1H, dd) 8.9, 15.1 C-31, C-35, C-52 137.15 d HC= 34 2.47 (1H, m) C-32, C-33, C-35, C-52 40.76 d CH 35 4.65 (1H, dd) 4.0, 8.1 C-1, C-34, C-53 79.78 d HC-O- 36 1.83 (1H, m) 2.53 d CH 42.52 t CH ₂ 37 0.82/1.26 (2H, m) C-35 42.52 t CH ₂ 40				C-21 C-23					
24 1.60/1.72 (2H, m) C-25 41.66 t CH2 25 3.77 (1H, m) 72.38 d HC-O- 26 1.45/1.60 (2H, m) C-25, C-27 43.46 t CH2 27 4.02 (1H, m) 69.05 d HC-O- 28 1.53 (1H, m) 45.15 d CH 29 3.94 (1H, m) C-27, C-28, C-30, C-51 75.60 d HC-O- 30 5.55 (1H, dd) 10.6, 15.0 C-29, C-32 135.20 d HC= 31 6.07 (1H, dd) 10.2, 15.0 C-29, C-33 132.00 d HC= 32 5.99 (1H, dd) 10.6, 15.0 C-30, C-34 131.90 d HC= 33 5.45 (1H, dd) 8.9, 15.1 C-31, C-35, C-52 137.15 d HC= 34 2.47 (1H, m) C-32, C-33, C-35, C-52 40.76 d CH 35 4.65 (1H, dd) 4.0, 8.1 C-1, C-34, C-53 79.78 d HC-O- 36 1.83 (1H, m) C-35 42.52 t CH2 37 0.82/1.26 (2H, m) 40.81 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
25									
26 1.45/1.60 (2H, m) C-25, C-27 43.46 t CH2 27 4.02 (1H, m) 69.05 d HC-O- 28 1.53 (1H, m) 45.15 d CH2 29 3.94 (1H, m) C-27, C-28, C-30, C-51 75.60 d HC-O- 30 5.55 (1H, dd) 10.6, 15.0 C-29, C-32 135.20 d HC= 31 6.07 (1H, dd) 10.6, 15.0 C-29, C-33 132.00 d HC= 31 6.07 (1H, dd) 10.6, 15.0 C-29, C-33 132.00 d HC= 32 5.99 (1H, dd) 10.6, 15.0 C-30, C-34 131.90 d HC= 34 2.47 (1H, m) C-31, C-35, C-52 137.15 d HC= 34 2.47 (1H, m) C-32, C-33, C-35, C-52 40.76 d CH 35 4.65 (1H, dd) 4.0, 8.1 C-1, C-34, C-53 79.78 d HC-O- 36 1.83 (1H, m) C-35 42.52 t CH2 38 1.56 1H, m) C-35 42.52 t CH2 40 1.29/1.57 (2H, m) <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>						_			
27 4.02 (1H, m) 69.05 d HC-O-28 28 1.53 (1H, m) 45.15 d CH 29 3.94 (1H, m) C-27, C-28, C-30, C-51 75.60 d HC-O-30 30 5.55 (1H, dd) 10.6, 15.0 C-29, C-32 135.20 d HC= 31 6.07 (1H, dd) 10.2, 15.0 C-29, C-33 132.00 d HC= 32 5.99 (1H, dd) 10.6, 15.0 C-30, C-34 131.90 d HC= 33 5.45 (1H, dd) 8.9, 15.1 C-31, C-35, C-52 137.15 d HC= 34 2.47 (1H, m) C-32, C-33, C-35, C-52 40.76 d CH 35 4.65 (1H, dd) 4.0, 8.1 C-1, C-34, C-53 79.78 d HC-O- 36 1.83 (1H, m) 32.53 d CH CH 37 0.82/1.26 (2H, m) C-35 42.52 t CH2 40 1.29/1.57 (2H, m) C-41 27.81 t CH2 41 1.29/1.57 (2H, m) C-41 27.81 t CH2 42 5.37 (1H, dt) C-41 27.81 t CH2 43 1.52 (1H, m) <				C-25, C-27					
29 3.94 (1H, m) C-27, C-28, C-30, C-51 75.60 d HC-O-30 30 5.55 (1H, dd) 10.6, 15.0 C-29, C-32 135.20 d HC= 31 6.07 (1H, dd) 10.2, 15.0 C-29, C-33 132.00 d HC= 32 5.99 (1H, dd) 10.6, 15.0 C-30, C-34 131.90 d HC= 33 5.45 (1H, dd) 8.9, 15.1 C-31, C-35, C-52 137.15 d HC= 34 2.47 (1H, m) C-32, C-33, C-35, C-52 40.76 d CH 35 4.65 (1H, dd) 4.0, 8.1 C-1, C-34, C-53 79.78 d HC-O- 36 1.83 (1H, m) 32.53 d CH C-35 42.52 t CH2 38 1.56 1H, m) 40.70 d CH CH2 C25 42.52 t CH2 40 1.29/1.92 (2H, m) C-41 27.81 t CH2 CH2 41 1.92 (2H, m) C-44 132.10 d HC= 42 5.37 (1H, dt) C-44 132.10 d HC= 43		, , ,							
30 5.55 (1H, dd) 10.6, 15.0 C-29, C-32 135.20 d HC= 31 6.07 (1H, dd) 10.2, 15.0 C-29, C-33 132.00 d HC= 32 5.99 (1H, dd) 10.6, 15.0 C-30, C-34 131.90 d HC= 33 5.45 (1H, dd) 8.9, 15.1 C-31, C-35, C-52 137.15 d HC= 34 2.47 (1H, m) C-32, C-33, C-35, C-52 40.76 d CH 35 4.65 (1H, dd) 4.0, 8.1 C-1, C-34, C-53 79.78 d HC-O- 36 1.83 (1H, m) 32.53 d CH 37 0.82/1.26 (2H, m) C-35 42.52 t CH2 40 1.29/1.57 (2H, m) 40.70 t CH2 40 1.29/1.57 (2H, m) C-41 27.81 t CH2 41 1.92 (2H, m) C-41 27.81 t CH2 42 5.37 (1H, dt) C-44 132.10 d HC= 43 5.34 (1H, dt) C-41 129.90 d HC= 44 1.99 (2H, m) C-42, C-43,	28	1.53 (1H, m)			45.15 d	CH			
31 6.07 (1H, dd) 10.2, 15.0 C-29, C-33 132.00 d HC= 32 5.99 (1H, dd) 10.6, 15.0 C-30, C-34 131.90 d HC= 33 5.45 (1H, dd) 8.9, 15.1 C-31, C-35, C-52 137.15 d HC= 34 2.47 (1H, m) C-32, C-33, C-35, C-52 40.76 d CH 35 4.65 (1H, dd) 4.0, 8.1 C-1, C-34, C-53 79.78 d HC-O- 36 1.83 (1H, m) 32.53 d CH 37 0.82/1.26 (2H, m) C-35 42.52 t CH2 38 1.56 1H, m) 40.70 d CH 40 1.29/1.57 (2H, m) C-41 27.81 t CH2 40 1.29/1.92 (2H, m) C-41 27.81 t CH2 41 1.92 (2H, m) C-41 132.10 d HC= 42 5.37 (1H, dt) C-44 132.10 d HC= 43 5.34 (1H, dt) C-41 129.90 d HC= 44 1.99 (2H, m) C-42, C-43, C-45, C-46 30.67 t </td <td>29</td> <td>3.94 (1H, m)</td> <td></td> <td>C-27, C-28, C-30, C-51</td> <td>75.60 d</td> <td>HC-O-</td>	29	3.94 (1H, m)		C-27, C-28, C-30, C-51	75.60 d	HC-O-			
32 5.99 (1H, dd) 10.6, 15.0 C-30, C-34 131.90 d HC= 33 5.45 (1H, dd) 8.9, 15.1 C-31, C-35, C-52 137.15 d HC= 34 2.47 (1H, m) C-32, C-33, C-35, C-52 40.76 d CH 35 4.65 (1H, dd) 4.0, 8.1 C-1, C-34, C-53 79.78 d HC-O- 36 1.83 (1H, m) 32.53 d CH 37 0.82/1.26 (2H, m) C-35 42.52 t CH2 38 1.56 1H, m) 40.70 d CH 39 1.29/1.57 (2H, m) 40.70 t CH2 40 1.29/1.92 (2H, m) C-41 27.81 t CH2 41 1.92 (2H, m) C-40, C-42, C-43 33.80 t CH2 42 5.37 (1H, dt) C-44 132.10 d HC= 43 5.34 (1H, dt) C-41 129.90 d HC= 44 1.99 (2H, m) C-42, C-43, C-45, C-46 30.67 t CH2 45 1.60 (2H, m) C-42, C-43, C-45, C-46 29.90 t CH2	30	5.55 (1H, dd)	10.6, 15.0		135.20 d	HC=			
33 5.45 (1H, dd) 8.9, 15.1 C-31, C-35, C-52 137.15 d HC= 34 2.47 (1H, m) C-32, C-33, C-35, C-52 40.76 d CH 35 4.65 (1H, dd) 4.0, 8.1 C-1, C-34, C-53 79.78 d HC-O- 36 1.83 (1H, m) 32.53 d CH 37 0.82/1.26 (2H, m) C-35 42.52 t CH2 38 1.56 1H, m) 40.70 d CH 39 1.29/1.57 (2H, m) 40,70 t CH2 40 1.29/1.92 (2H, m) C-41 27.81 t CH2 41 1.92 (2H, m) C-40, C-42, C-43 33.80 t CH2 42 5.37 (1H, dt) C-44 132.10 d HC= 43 5.34 (1H, dt) C-41 129.90 d HC= 44 1.99 (2H, m) C-42, C-43, C-45, C-46 30.67 t CH2 45 1.60 (2H, m) C-42, C-43, C-45, C-46 30.67 t CH2 45 1.60 (2H, m) C-44, C-58 42.03 t CH2 47<									
34 2.47 (1H, m) C-32, C-33, C-35, C-52 40.76 d CH 35 4.65 (1H, dd) 4.0, 8.1 C-1, C-34, C-53 79.78 d HC-O- 36 1.83 (1H, m) 32.53 d CH 37 0.82/1.26 (2H, m) C-35 42.52 t CH2 38 1.56 1H, m) 40.70 d CH 39 1.29/1.57 (2H, m) 40,70 t CH2 40 1.29/1.92 (2H, m) C-41 27.81 t CH2 41 1.92 (2H, m) C-41 27.81 t CH2 42 5.37 (1H, dt) C-44 132.10 d HC= 43 5.34 (1H, dt) C-44 129.90 d HC= 44 1.99 (2H, m) C-42, C-43, C-45, C-46 30.67 t CH2 45 1.60 (2H, m) C-42, C-43, C-44, C-46 29.90 t CH2 46 3.09 (2H, t) C-44, C-58 42.03 t CH2 47 1.120 (3H, dd) 6.8 C-1, C-2, C-3 13.15 q CH3 48 0.890 (3H, dd) 6.8 C-5, C-6 15.51 q CH3 50									
35 4.65 (1H, dd) 4.0, 8.1 C-1, C-34, C-53 79.78 d HC-O-36 36 1.83 (1H, m) 32.53 d CH 37 0.82/1.26 (2H, m) C-35 42.52 t CH2 38 1.56 1H, m) 40.70 d CH 39 1.29/1.57 (2H, m) C-41 27.81 t CH2 40 1.29/1.92 (2H, m) C-41 27.81 t CH2 41 1.92 (2H, m) C-40, C-42, C-43 33.80 t CH2 42 5.37 (1H, dt) C-44 132.10 d HC= 43 5.34 (1H, dt) C-41 129.90 d HC= 44 1.99 (2H, m) C-42, C-43, C-45, C-46 30.67 t CH2 45 1.60 (2H, m) C-42, C-43, C-45, C-46 30.67 t CH2 45 1.60 (2H, m) C-44, C-58 42.03 t CH2 47 1.120 (3H, dd) 6.8 C-1, C-2, C-3 13.15 q CH3 48 0.890 (3H, dd) 6.8 C-5, C-6 15.51 q CH3 49 0.900 (3H, dd) 6.8 C-9, C-10, C-11 10.31 q			8.9, 15.1						
36 1.83 (1H, m) 32.53 d CH 37 0.82/1.26 (2H, m) C-35 42.52 t CH2 38 1.56 1H, m) 40.70 d CH 39 1.29/1.57 (2H, m) 40,70 t CH2 40 1.29/1.92 (2H, m) C-41 27.81 t CH2 41 1.92 (2H, m) C-40, C-42, C-43 33.80 t CH2 42 5.37 (1H, dt) C-44 132.10 d HC= 43 5.34 (1H, dt) C-41 129.90 d HC= 44 1.99 (2H, m) C-42, C-43, C-45, C-46 30.67 t CH2 45 1.60 (2H, m) C-42, C-43, C-45, C-46 30.67 t CH2 45 1.60 (2H, m) C-44, C-58 42.03 t CH2 47 1.120 (3H, dd) 6.8 C-1, C-2, C-3 13.15 q CH3 48 0.890 (3H, dd) 6.8 C-5, C-6 15.51 q CH3 49 0.900 (3H, dd) 6.8 C-9, C-10, C-11 10.31 q CH3 50 0.865 (3H, dd) 6.8 C-13, C-14, C-15 11.10 q CH3			40.01						
37 0.82/1.26 (2H, m) C-35 42.52 t CH2 38 1.56 1H, m) 40.70 d CH 39 1.29/1.57 (2H, m) 40,70 t CH2 40 1.29/1.92 (2H, m) C-41 27.81 t CH2 41 1.92 (2H, m) C-40, C-42, C-43 33.80 t CH2 42 5.37 (1H, dt) C-44 132.10 d HC= 43 5.34 (1H, dt) C-41 129.90 d HC= 44 1.99 (2H, m) C-42, C-43, C-45, C-46 30.67 t CH2 45 1.60 (2H, m) C-42, C-43, C-45, C-46 30.67 t CH2 45 1.60 (2H, m) C-44, C-58 42.03 t CH2 46 3.09 (2H, t) C-44, C-58 42.03 t CH2 47 1.120 (3H, dd) 6.8 C-1, C-2, C-3 13.15 q CH3 48 0.890 (3H, dd) 6.8 C-5, C-6 15.51 q CH3 49 0.900 (3H, dd) 6.8 C-10, C-11 10.31 q CH3 50 0.865 (3H, dd) 6.8 C-27, C-28, C-29 20.41 q			4.0, 8.1	C-1, C-34, C-33					
38 1.56 1H, m) 40.70 d CH 39 1.29/1.57 (2H, m) 40,70 t CH2 40 1.29/1.92 (2H, m) C-41 27.81 t CH2 41 1.92 (2H, m) C-40, C-42, C-43 33.80 t CH2 42 5.37 (1H, dt) C-44 132.10 d HC= 43 5.34 (1H, dt) C-41 129.90 d HC= 44 1.99 (2H, m) C-42, C-43, C-45, C-46 30.67 t CH2 45 1.60 (2H, m) C-42, C-43, C-45, C-46 30.67 t CH2 46 3.09 (2H, t) C-44, C-58 42.03 t CH2 47 1.120 (3H, dd) 6.8 C-1, C-2, C-3 13.15 q CH3 48 0.890 (3H, dd) 6.8 C-5, C-6 15.51 q CH3 49 0.900 (3H, dd) 6.8 C-9, C-10, C-11 10.31 q CH3 50 0.865 (3H, dd) 6.8 C-13, C-14, C-15 11.10 q CH3 51 0.870 (3H, dd) 6.8 C-27, C-28, C-29 20.41 q CH3 52 1.000 (3H, dd) 6.8				C-35					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C 33					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				C-41					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C-40, C-42, C-43					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	5.37 (1H, dt)		C-44	132.10 d	HC =			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43	5.34 (1H, dt)		C-41	129.90 d	HC=			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.99 (2H, m)			30.67 t	CH_2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						_			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					•				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		***** (****, ****)			•				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.23 (2H, m)		C-55, C-57					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
61 2.74 (2H, m) 44.48 t CH ₂	59	2.80 (3H, s)		C-58	28.34 q				
						C_q			
62 171.80 s C _q		2.74 (2H, m)							
	62				171.80 s	C_q			

Table 1. ¹H and ¹³C NMR data of malonyl-4,5-dihydroniphimycin (1)^a.

 $^{^{\}rm a}$ In [D₄]MeOH, 400 MHz and 100.62 MHz; δ in ppm, J in Hz.

Position		δ (1 H)			δ (¹³ C)		
	1	2	3	1	2	3	
3.	3.63 (1H, m)	4.17 (1H, m)	3.72 (1H, m)	73.20 d	65.50 d	72.96 d	
4.	1.47 (2H, m)	5.46 (1H, dd)	1.50 (2H, m)	37.56 t	132.50 d	37.40 t	
5.	1.25/1.44 (2H, m)	5.77 (1H, dd)	1.31/1.50 (2H, m)	29.47 t	136.50 d	29.38 t	
6.	1.50 (1H, m)	2.34 (1H, m)	1.55 (1H, m)	40.00 d	43.39 d	39.91 d	
7.	3.55 (1H, m)	3.78 (1H,m)	3.65 (1H,m)	77.30 d	76.01 d	77.17 d	
18.	3.53 (1H, dd)	3.70 (1H, dd)	3.53 (1H, dd)	74.20 d	74.23 d	77.07 d	
19.	5.10 (1H, m)	5.27 (1H, m)	3.87 (1H, m)	74.20 d	74.23 d	69.65 d	
20.	1.21/1.81 (2H, m)	1.41/2.02 (2H, m)	1.30/1.90 (2H, m)	38.25 t	38.20 t	41.22 t	
21.	4.15 (1H, m)	4.16 (1H, m)	4.07 (1H, m)	71.02 d	76.00 d	65.40 d	
22.	1.60/1.72 (2H, m)	1.72/1.77 (2H, m)	1.66/1.80 (2H, m)	41.66 t	41.66 t	41.48 t	
23.	5.16 (1H, m)	5.32 (1H, m)	5.25 (1H, m)	71.00 d	71.57 d	70.66 d	
24.	1.60/1.72 (2H, m)	1.72/1.77 (2H, m)	1.66/1.80 (2H, m)	41.66 t	41.66 t	41.48 t	
25.	3.77 (1H, m)	3.95 (1H, m)	3.85 (1H, m)	72.38 d	72.38 d	72.28 d	
55.				170.62 s	170.00 s	171.60 s	
56.	3.23 (2H, m)	3.30 (2H, m)	3.25 (2H, m)	46.00 t	49.85 t	46.00 t	
57.				172.20 s	172.20 s	174.08 s	
58.				158.30 s	158.30 s	158.17 s	
59.	2.80 (3H, s)	2.80 (3H, s)	2.83 (3H, s)	28.34 q	28.34 q	28.34 q	
60.		,	,	169.50 s	169.50 s		
61.	2.74 (2H, m)	2.75 (2H, m)		44.48 t	44.50 t		
62.	. , ,			171.80 s	171.80 s		

Table 2. Comparison of the ¹H and ¹³C NMR data of malonyl-4,5-dihydroniphimycin (1), malonylniphimycin (2) and dihydroniphimycin (3)^a.

but insoluble in ethyl acetate, chloroform, ether, nhexane, and water. Compound 1 showed UV maxima at 226 (sh), 232, and 241 (sh) nm. The structure of two conjugated double bonds was easily ascertained to be a dienic system by the precise wavelength of the absorption band at 232 nm. Structural assignment of 1 was achieved by interpretation of MS and NMR data, including two-dimensional ¹H-¹H COSY, ¹H-¹³C COSY, HMBC, and by comparison with the data of dihydroniphimycin [14] and malonylniphimycin [13]. The positive FAB-MS spectrum of 1 indicated an intense peak at $m/z = 1230.0 \, [M+H]^+$. The molecular formula of 1 was established as $C_{62}H_{107}N_3O_{21}$ by HRFAB-MS analysis ($m/z = 1230.4900 \text{ [M+H]}^+$). The chemical formula of 1 suggested the presence of eleven double bond equivalents. A series of fragment ions were observed at $m/z = 1186 \text{ [MH-CO}_2\text{]}^+$, 1144 [MH-OOCCH₂CO]⁺, 1126 [M-HOOCCH₂COO]⁺, 448, 386, 282, 252, 224. The protonated molecular ion peak of dihydroniphimycin [14] at $m/z = 1144 \text{ [M+H]}^+$ differs in 86 mass units from the protonated molecular ion of 1 at $m/z = 1230 \text{ [M+H]}^+$. This difference might be explained by the presence of another malonyl residue in 1.

The ¹³C NMR and JMOD spectra showed in the range of 10.31 to 20.41 ppm the peaks of eight methyl groups. The signal at 28.34 ppm has been assigned to

an -HN–CH₃ unit. The presence of 8 methine and 19 methylene groups was indicated in the range from 19 to 50 ppm, and the presence of 13 HC–O- units by resonances in the range from δ = 65.78 to 79.78. The signal at 99.97 ppm showed the presence of the hemiacetal carbon. In the 129.90 to 137.15 ppm range 6 signals of olefinic carbon atoms were observed. The singlet at 158.30 ppm could be ascribed to the guanidino carbon, while the singlet at 176.80 ppm indicated the presence of a lactone carbonyl. Compound 1 exhibits two sets of signals due to the malonyl groups at 170.62 and 169.50 ppm (COOR), and at 172.20 and 171.80 ppm (COOH).

In the ^1H - ^1H COSY spectrum, the resonances of the protons in the dienic system were found at $\delta=6.07$ (1H, dd, 31-H), 5.99 (1H, dd, 32-H), 5.55 (1H, dd, 30-H) and 5.45 (1H, dd, 33-H). The other two olefinic protons were distinguishable at $\delta=5.37$ (1H, dt, 42-H) and 5.34 (1H, dt, 43-H). The protons 34-H, 29-H, 44-H and 41-H are directly coupled to the olefinic protons (33-H, 30-H, 43-H and 42-H). The proton 34-H at $\delta=2.47$ was clearly coupled to the methyl protons at $\delta=1.00$ (52-H₃), and the methine proton at $\delta=4.65$, with a lack of other couplings, was assigned to 35-H adjacent to the carboxylic group. The absolute interpretation of ^1H - ^1H COSY spectrum is demonstrated in Fig. 1.

 $^{^{\}rm a}$ In [D₄]MeOH, 400 MHz and 100.62 MHz; δ in ppm.

The positions of two malonyl groups of 1 were determined for C-23 and C-19 the protons of which appeared at $\delta = 5.16$ and 5.10. The ¹H-¹H COSY spectrum also showed multiplets at $\delta = 5.16$, 5.10 and 3.77, 3.53 which accounted for the methine protons attached to these two malonyl groups (C-23, C-19), and two hydroxyl groups at C-25 and C-18, respectively. A signal at $\delta = 3.77$ (25-H) showed cross peaks with the multiplets at $\delta = 1.45/1.60 (26-H_2)$ and 1.60/1.72 (24-H₂), while a signal at $\delta = 5.16$ (23-H) was correlated only to the signals at 1.60/1.72 (22-H₂, 24- H_2). The proton 18-H appeared as a doublet at δ = 3.53 due to the hemiacetal moiety at C-17. A signal at $\delta = 5.10$ (19-H) was correlated to the signals at $\delta = 1.21/1.81 (20-H_2)$ and 3.53 (18-H). These observations confirmed the correct positions of the malonyl groups at C-23 and C-19. The ¹H-¹H COSY spectrum of 1 revealed connectivities of C-2~C-16, C-18~C-31, C-32~C-42, and C-43~C-46. The signals between 3.40 and 4.20 ppm with no corresponding cross peaks in the ¹H-¹³H COSY spectrum were assigned to hydroxyl protons.

The stereochemistry of the double bonds of malonyl-4,5-dihydroniphimycin were established on the basis of the coupling constants in the 1 H NMR spectrum. The configuration of the diene system at C-30 and C-32 was determined as 30E, 32E from the large *trans* coupling constants of 30-H (J = 10.6, 15.0 Hz), 31-H (J = 10.2, 15.0 Hz), 32-H (J = 10.6, 15.0 Hz) and 33-H (J = 8.9, 15.1 Hz). Though the signals of 42-H and 43-H of the malonyl-4,5-dihydroniphimycin are poorly resolved in the normal spectrum because of the overlapping of these signals with 33-H. The stereochemistry of the double bond C-42,C-43 could not be established.

In the HMBC spectrum seven quaternary carbon atoms were detected, five in the carbonyl region (δ = 176.80, 172.20, 171.80, 170.62 and 169.50), one guanidino carbon (δ = 158.30) and one at δ = 99.97. The formation of a 36-membered lactone ring in 1 is proved unambiguosly by a strong cross peak between 35-H and C-1. Two strong cross peaks from the methylene protons of 56-H₂ to the carbonyl groups at δ = 170.62 (C-55) and 172.20 (C-57) were established. The position of the esterification is defined by cross peaks between 23-H and 19-H to the carbonyl groups at δ = 170.62 (C-55) and 169.50 (C-60). The cross peak between 46-H₂ (δ = 3.09) and C-58 (δ = 158.30) allowed to identify the guanidino moiety. A cross peak was also observed from the methyl singlet

Table 3. Comparison of the antimicrobial activity of malonyl-4,5-dihydroniphimycin (1), malonylniphimycin (2), dihydroniphimycin (3) and niphimycin (4)^a.

Test organisms	1	2	3	4
Candida albicans	25.00	31.25	7.00	7.81
Aspergillus niger	6.25	7.81	3.13	3.91
Penicillium chrysogenum	7.81	7.81	6.25	6.25
Bacillus subtilis	50.00	50.00	15.62	15.62
Staphilococcus aureus	50.00	50.00	12.50	12.50
Micrococcus luteus	6.25	6.25	3.13	3.13
Microsporum canis	1.95	1.95	0.98	0.98
Streptococcus pyogenes	100.00	100.00	25.00	25.00
Escherichia coli	0.00	0.00	0.00	0.00

^a MIC: μ g mL⁻¹.

of 59-H₃ (δ = 2.80) to a quaternary C-58 (δ = 158.30). ¹H-¹H COSY and HMBC data implied that the methyl groups were attached at C-2, C-6, C-10, C-14, C-28, C-34, C-36 and C-38. The chemical shifts of all proton and carbon atoms are summarised in Table 1.

The malonyl-4,5-dihydroniphimycin (1) is a natural product, directly isolated from the mycelium of the strain Streptomyces hygroscopicus 15. Compound 1 is a new antibiotic [17, 18] having a 36-membered ring, two malonate and one monomethylguanidino groups. The positions of two malonyl residues were determined to be C-23 and C-19 the protons of which appeared at $\delta = 5.16$ and 5.10. The antibiotic 1 is the most similar to malonylniphimycin [13]. The molecular weight of malonylniphimycin, 1227 Da (C₆₂H₁₀₅N₃O₂₁), differs by two mass units from the molecular weight of 1, 1229 Da (C₆₂H₁₀₇N₃O₂₁). The structural difference between malonylniphimycin and malonyl-4,5-dihydroniphimycin (1) is the absence of one double bond at C-4 and C-5 in the unsaturated lactone moiety of 1 (Table 2). In the ¹H-¹H COSY spectrum of 1 the methylene protons at $\delta = 1.25/1.44$ (5- H_2) are coupled with the methylene protons at $\delta = 1.47$ (4-H₂), which directly couples to the methine proton of 3-H. It can be assumed that malonyl-4,5-dihydroniphimycin (1) has one more malonyl residue ($\delta = 169.50 \text{ s}$, C-60; 44.48 t, C-61; 171.80 s, C-62) at C-19 in comparison with the data of dihydroniphimycin. The chemical shifts of the proton and carbon atoms of different regions of malonyl-4,5-dihydroniphimycin (1), malonylniphimycin (2) and dihydroniphimycin (3) are summarised in Table 2.

The inhibitory effect of malonyl-4,5-dihydroniphimycin (1) on filamentous fungi, yeasts, Gram-positive and Gram-negative bacteria was investigated *in vitro* by comparison with the non-polyenic macrolide antibiotics such as malonylniphimycin (2), dihydroniphi-

mycin (3) and niphimycin (4) (Table 3). The malonyl-4,5-dihydroniphimycin (1) displayed an inhibitory effect against fungi, yeasts and Gram-positive bacteria comparable to the malonylniphimycin (2). The antibiotics (dihydroniphimycin and niphimycin), which possess one malonyl residue in their structures, showed a higher antimicrobial activity than the antibiotics with two malonyl groups.

Acknowledgement

The authors are grateful to Mrs. M. Ponelle, Novartis Pharma, Basel, for helpful discussions regarding the structure determination by 2D NMR spectroscopy.

- [1] S. Iwasaki, M. Namikoshi, K. Sasaki, M. Amana, K. Fukushima, S. Nozoe, S. Okuda, *Chem. Pharm. Bull.* 1982, 30, 1669 – 1673.
- [2] S. Iwasaki, M. Namikoshi, K. Sasaki, K. Fukushima, S. Okuda, *Chem. Pharm. Bull.* **1982**, *30*, 4006 – 4014.
- [3] D. Samain, J. Cook, K. Rinehart, *J. Am. Chem. Soc.* **1982**, *104*, 4129–4141.
- [4] L. Bassi, B. Joos, P. Gassmann, H.-P. Kaiser, H. Leuenberger, W. Keller-Schierlein, *Helv.Chim. Acta.* 1983, 66, 92 117.
- [5] W. Keller-Schierlein, B. Joos, H.-P. Kaiser, P. Gassmann, *Helv. Chim. Acta.* **1983**, *66*, 226 258.
- [6] P. Gassmann, L. Hagmann, W. Keller-Schierlein,D. Samain, Helv. Chim. Acta. 1984, 67, 696 705.
- [7] K. Fukushima K, T. Arai, S. Iwasaki, M. Namikoshi, S. Okuda, *J. Antibiot.* 1982, 35, 1480 – 1494.
- [8] K. Takesako, T. Beppu, J. Antibiot. 1984, 37, 1170 1186.
- [9] H. Stephan, C. Kempter, J. Metzger, G. Jung, O. Potterat, C. Pfefferle, H.-P. Fiedler, *J. Antibiot.* **1996**, *49*, 765 769.

- [10] M. Ubukata, T. Morita, H. Osada, J. Antibiot. 1995, 48, 293 – 299.
- [11] H. Koshino, K. Kobinata, J. Uzawa, M. Uramato, K. Isono, H. Osada, *Tetrahedron* **1993**, *49*, 8827 – 8836.
- [12] S. Grabley, P. Hammann, W. Raether, J. Wink, A. Zeeck, J. Antibiot. 1990, 43, 639 – 647.
- [13] V. Ivanova, A. Gushterova, J. Antibiot. 1997, 50, 965 969.
- [14] V. Ivanova, V. Gesheva, M. Kolarova, J. Antibiot. 2000, 53, 627 – 632.
- [15] V. Gesheva, R. Gesheva, V. Ivanova, P. Panayotov, Compt. Rend. Acad. Bulg. Sci. 1988, 41, 53 – 56.
- [16] *European Pharmacopoia*, 3th Ed., Deutscher Apotheker Verlag, Stuttgart. **1997**, p. 13 118.
- [17] H. Laatsch, *Antibase, A Data Base for Rapid Structural Determination of Microbial Natural Products*, Chemical Concepts, Weinheim, **1994 2007**.
- [18] Dictionary of Natural Products on CD-ROM, Version 15.1, Chapmann & Hall/CRC, London, 1982 – 2007.