Crystal Structure, Vibrational Spectrum and Thermal Behavior of the Ammonium Hexathiohypodiphosphate Dihydrate, $(NH_4)_4P_2S_6 \cdot 2H_2O$

Mimoza Gjikaj and Wolfgang Brockner

Institute of Inorganic and Analytical Chemistry, Clausthal University of Technology, Paul-Ernst-Straße 4, D-38678 Clausthal-Zellerfeld, Germany

Reprint requests to Dr. M. Gjikaj. Fax: +49(0)5323-722995. E-mail: mimoza.gjikaj@tu-clausthal.de

Z. Naturforsch. **2007**, *62b*, 1102–1106; received February 16, 2007

Single crystals of $(NH_4)_4P_2S_6 \cdot 2H_2O$ could be obtained and the crystal structure determined (monoclinic, $P2_1/c$ with a = 6.931(1), b = 12.730(2), c = 17.446(2) Å, $\beta = 96.87(1)^\circ$, V = 1528.2(4) Å³, Z = 4). The NH₄⁺, and $[P_2S_6]^{4-}$ ions and the water molecules are involved in an extended hydrogenbonding network. The FT-Raman and FT-IR spectra have been recorded and the observed vibrational frequencies assigned to tetrahedral NH₄⁺ and $[P_2S_6]^{4-}$ (D_{3d}) ions as well as to H₂O molecules. The thermogravimetric analysis has shown that (NH₄) $_4P_2S_6 \cdot 2H_2O$ starts to decompose at around 60 °C (up to 170 °C), but no distinct intermediates could be observed.

Key words: Hexathiodiphosphate(IV), Hexathiohypodiphosphate, Crystal Structure, Raman, IR

Introduction

Based on a certain stability of the $[P_2S_6]^{4-}$ ion in cold aqueous solutions [1-7], very recently, the alkali thiophosphate hydrates $K_4P_2S_6 \cdot 4H_2O$, Rb_4P_2 $S_6 \cdot 6H_2O$ and $Cs_4P_2S_6 \cdot 6H_2O$ could be obtained and structurally characterized [8] beside the long known Na₄P₂S₆ $\cdot 6H_2O$ [1-5,9]. Several anhydrous hexathiohypodiphosphates have also been synthesized and investigated, *e. g.* Li₄P₂S₆ [10], some alkaline earth compounds, $M^{II}_2P_2S_6$ [11-13] as well as (NH₄)₄P₂S₆ [3,4] and others. Despite these considerable efforts, structural information on thiohypodiphosphate hydrates are scarce. The ammonium compound (NH₄)₄P₂S₆ $\cdot 2H_2O$, as a system with an extended hydrogen-bonding network, is presented here. Due to its good solubility the title compound might be a syn-

Table 1. Crystallographic data and structure refinement parameters for $(NH_4)_4P_2S_6 \cdot 2H_2O$.

Empirical formula	$H_{20}N_4O_2P_2S_6$
Formula weight, g mol ⁻¹	362.50
Crystal system/space group	monoclinic/ $P2_1/c$ (no. 14)
<i>a</i> , Å	6.931(1)
<i>b</i> , Å	12.730(2)
<i>c</i> , Å	17.446(2)
β , deg	96.87(1)
$V, Å^3$	1528.2(4)
Ζ	4
$D_{\rm calc}, {\rm g}{\rm cm}^{-3}$	1.58
$\mu(MoK_{\alpha}), mm^{-1}$	2.1
<i>F</i> (000), e	760
Т, К	223(2)
λ (Mo K_{α} radiation), Å	0.71073
$2\theta_{\rm max}$, deg	50.68
Index range	$-8 \le h \le 8$,
	$-15 \le k \le 15$,
	$-21 \le l \le 21$
Unique reflections	2799
Refined parameters	207
Goodness-of-fit on F^2	1.157
$R_1 [I \ge 2\sigma(I)]/R_1$ (all data)	0.0418/0.0644
$wR_2 [I \ge 2\sigma(I)]/wR_2$ (all data)	0.0659/0.0710
$\Delta \rho_{\text{max/min}}$, e Å ⁻³	0.453/-362

thon for the preparation of metal thiophosphates by soft chemistry reactions in aqueous solutions.

Experimental Section

Synthesis and characterization

 $(NH_4)_4P_2S_6$ was prepared according to Falius and Krause [3] by adding NH_4NO_3 to an aqueous solution of $Na_4P_2S_6 \cdot 6H_2O$. The white squamous $(NH_4)_4P_2S_6$ crystals were filtered off and washed with ethanol. Single crystals of $(NH_4)_4P_2S_6 \cdot 2H_2O$ were obtained by recrystallization from ethanol/water (1:3) solutions at 5 °C after a few days.

The FT-Raman spectrum was recorded with a Raman module FRA 106 (Nd:YAG laser, 1064 nm, > 200 mW) attached to a Bruker IFS 66v interferometer. The FT-IR/FIR spectra were obtained from PE pellets (*ca.* 80–500 cm⁻¹) and KBr pellets, respectively, with the FT-IR interferometer.

The thermogravimetric (TG) analysis of the title compound was performed in an atmosphere of flowing argon (50 mL min⁻¹) at a heating rate of 5 K min⁻¹ using a 951 thermogravimetric analyzer/TA Instruments.

X-Ray structure analysis

A suitable single crystal (colorless, crystal size: $0.25 \times 0.20 \times 0.20 \text{ mm}^3$) was selected under a polarization micro-

0932–0776 / 07 / 0800–1102 \$ 06.00 © 2007 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

Table 2. Selected interatomic distances (Å) and angles (deg) in the structure of $(NH_4)_4P_2S_6 \cdot 2H_2O$.

P1-S1	2.021(1)	P2-S4	2.031(1)
P1-S2	2.027(1)	P2-S5	2.023(1)
P1-S3	2.019(1)	P2-S6	2.019(1)
P1-P2	2.263(1)		
S1-P1-S2	112.58(5)	S4-P2-S5	112.54(5)
S1-P1-S3	112.37(5)	S4-P2-S6	112.91(5)
S2-P1-S3	112.28(5)	S5-P2-S6	111.37(5)
S1-P1-P2	105.35(4)	S4-P2-P1	105.94(4)
S2-P1-P2	106.40(4)	S5-P2-P1	106.70(4)
S3-P1-P2	107.28(4)	S6-P2-P1	106.86(4)

scope and mounted in a glass capillary. Intensity data were collected on a Stoe IPDS II diffractometer using graphitemonochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å). The structure was solved by Direct Methods and refined using least-squares methods on F^2 (SHELXS/L-97 [14]) with anisotropic displacement parameters for the non-H atoms. All H atom positions were detected in difference Fourier syntheses. Structure representations: DIAMOND [15] and POV-Ray [16]. Table 1 summarizes the crystal and other data pertinent to the structure determination. Selected interatomic distances and bond angles are listed in Table 2. Hydrogen bond details are given in Table 3.

Further details of the crystal structure investigation may be obtained from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: +49-7247-808-666; e-mail: crysdata@fiz-karlsruhe.de, http://www.fizinformationsdienste.de/en/DB/icsd/depot_anforderung.html) on quoting the deposition number CSD-417640.

Results and Discussion

The crystal structure of $(NH_4)_4P_2S_6 \cdot 2H_2O$ is comprized of discrete $[P_2S_6]^{4-}$ anions, tetrahedral NH_4^+ cations and water molecules involved in an extended hydrogen-bonding network. The ethane-like $[P_2S_6]^{4-}$ anion is in a staggered conformation and integrated *via* S-NH₄⁺-S and S-H₂O-S bridges into the threedimensional network.

The P–P distance amounts to 2.263 Å and the P–S bond lengths range from 2.019 to 2.031 Å, similar to those reported for $Na_4P_2S_6 \cdot 6H_2O$ [9] and $Li_4P_2S_6$ [10]. The $[P_2S_6]^{4-}$ units are surrounded by ten NH₄⁺ cations and four water molecules connected *via* hydrogen bonds, with N···S distances from 3.309 to 3.680 Å and O···S distances from 3.174 to 3.382 Å (Fig. 1).

The structure contains four crystallographically different NH_4^+ cations (Fig. 2). These ammonium ions exhibit slight deviations from the ideal tetrahedal sym-

Table 3. Selected hydrogen bond lengths (Å) and angles (deg) in $(NH_4)_4P_2S_6 \cdot 2H_2O$.

N4…01	2.845	N4-H43····O1	164.1
$N3 \cdots O2$	2.884	N3-H33····O2	164.4
$N4 \cdots O2$	2.894	$N4-H44\cdots O2$	165.8
N3…01	3.007	N3-H34····O1	176.7
$O1 \cdots S1$	3.174	$O1-H1A\cdots S1$	154.2
$O2 \cdots S2$	3.320	$O2-H2B\cdots S2$	174.1
$O1 \cdots S4$	3.328	$O1-H1B\cdots S4$	165.1
$O2 \cdots S5$	3.382	$O2-H2A\cdots S5$	155.9
$N3 \cdots S5$	3.309	N3-H31S5	157.9
$N2 \cdots S1$	3.336	N2-H21S1	167.2
$N1 \cdots S5$	3.364	N1-H11S5	167.8
$N2 \cdots S4$	3.415	N2-H22··· S4	173.1
$N3 \cdots S2$	3.427	N3-H32··· S2	164.3
$N2 \cdots S3$	3.436	$N2-H24\cdots S3$	162.6
$N1 \cdots S2$	3.443	N1-H13····S2	156.8
$N1 \cdots S6$	3.456	N1-H12··· S6	148.8
$N1 \cdots S6$	3.494	$N1-H14\cdots S6$	178.1
$N4 \cdots S4$	3.497	$N4-H42\cdots S4$	175.0
$N4 \cdots S3$	3.516	N4-H41S3	147.9
$N2 \cdots S4$	3.680	N2-H23S4	140.2

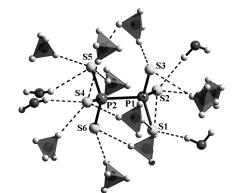
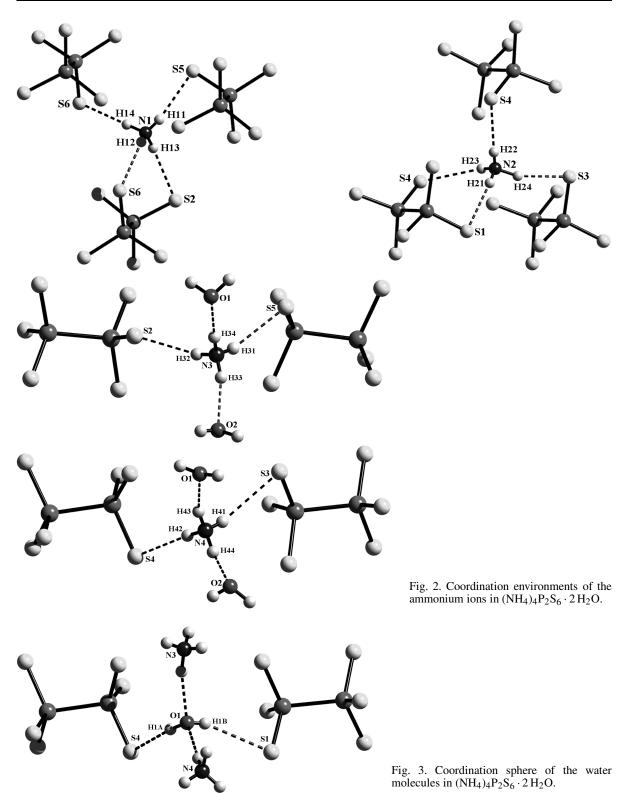



Fig. 1. The $[P_2S_6]^{4-}$ anion in $(NH_4)_4P_2S_6 \cdot 2H_2O$ with its full coordination environment (dotted lines represent hydrogen bonds).

metry with H–N–H bond angles between 106.3 and 113.1° for N1, 103.0 and 119.7° for N2, 105.0 and 115.2° for N3, and 105.4 to 113.3° for N4. N1 is connected *via* hydrogen bonds to three $[P_2S_6]^{4-}$ anions, one of which is bifurcated (Fig. 2). Its intermolecular N···S distances range from 3.364 to 3.494 Å, and N–H···S angles from 148.8 to 178.1°. Likewise, N2 is coordinated *via* hydrogen bonds to three $[P_2S_6]^{4-}$ anions (Fig. 2), with N···S distances range ing from 3.336 to 3.680 Å, and N–H···S angles from 140.2 to 173.1°. N3 and N4 are each coordinated to two $[P_2S_6]^{4-}$ anions (monodentate) and to two water molecules (Fig. 2). Therein the N···S distances range from 3.309 to 3.516 Å, the N···O distances from 2.845 to 3.007 Å, the N–H···S angles from 147.9 to 175.0°

$[P_2S_6]^{4-}$ in		$K_4P_2S_6\cdot 4I$	H_2O	Na ₄ P ₂ S ₆	$\cdot 6 H_2O$	Assignment
$(NH_4)_4P_2S_4$	$S_6 \cdot 2 H_2O$					
Raman	IR	Raman [8]	IR [8]	Raman [9	, ,	D_{3d}
80 vvw		75 vvw			87 w	Lattice
	104, 112 vw			101vw		vibrations
125 vw		120 vw	123 vw			
			135 w		137 vw	
			143 vw		150 vw	
	155 vbr ^b		168 w-m	162 vw	169 vvw	$(v_{12} / E_u)?$
		153 m ^c				v ₉ / E _g
170 vw,sh		170 w ^c		169 w		$(resp. A_g + B_g in C_{2h})$
200 m		188 m	186 w	197 m		v_3 / A_{1g}
	239 s		233 w-m		240 m-s	v_{11} / E_{u}
260 s		253 s ^c		263 s		v ₈ / E _g
		268 sh ^c				$(resp. A_g + B_g in C_{2h})$
	299 w		283 vs		296 vs	v_6 / A_{2u}
					299 sh	
376 vs		377 vvs		376 vvs	(380 vw)	v_2 / A_{1g}
					438 sh	6
	446 s		433 m		443 s	v_5 / A_{2u}
			486 vw		480 w-m	Librat. H ₂ O
550 s		558 s		556 s		v ₁ / A _{1g}
580 w,sh		588 m		579 m		v ₇ / E _g
	575 s		576 vs		582 vs	v_{10} / \breve{E}_u
			599 sh		592 sh	
	635 vw,sh ^d				606 sh ^e	[Comb. ?]
NH_4^+ in (1	$NH_4)_4P_2S_6 \cdot 2H_4$	I ₂ O	NH4+ [17]		Assignment
Raman	IR	-	Raman	. II	R	T_d [16]
	1365 vw	v,sh				
1395 w-m	1395 vs	-	1406 m	1-	407 s	v ₄ / F ₂
1411 w-m						
1627 w	1632 m					H–O–H bending
1686 w						v_2 / E
	2756 w,I	br		2	775 vvw	Comb.: $1365 + 1396$
	2902 w,l				924 vw	Comb.: $1365 + 1632$
				-		22220112002 10002

3160 w-m

Table 4. Vibrational frequencies (cm⁻¹) of the $[P_2S_6]^{4-}$ unit in crystalline (NH₄)₄- $P_2S_6 \cdot 2H_2O$ with their estimated intensities and proposed assignments^a.

^a Estimated intensities: s: strong, n: medium, w: weak, v: very, sh: shoulder, br: broad; ^b very proad (questionable) absorption with maximum at 155 cm⁻¹; ^c assigned in [12] in C_{2h} according to $E_g (D_{3d}) = A_g + B_g$ (in C_{2h}) in comparison to Sr₂P₂S₆; ^d combination (260 + 376 cm⁻¹)?; ^e combination/overtone (2 × 303 cm⁻¹)?.

Table 5. Vibrational frequencies (cm^{-1}) of the NH₄⁺ and H₂O units in crystalline $(NH_4)_4P_2S_6 \cdot 2H_2O$ with estimated intensities and with their proposed assignments^a.

^a Estimated intensities: s: strong, m: medium, w: weak, v: very, sh: shoulder, br: broad.

and the N–H···O angles from 164.1 to 176.7° (Table 3).

3071 w,br

3220 vw.br

 $(NH_4)_4P_2S_6 \cdot 2 \ H_2O$ contains two crystallographically different water molecules coordinated tetrahedrally by hydrogen bonds to two $[P_2S_6]^{4-}$ anions and two NH_4^+ cations (Fig. 3). The S···O distances are between 3.174 and 3.382 Å and the O–H···S angles between 154.2 and 174.1°. These values agree very well with those reported for $Na_3[PO_2S_2] \cdot 11 \ H_2O$ and $Na_3[POS_3] \cdot 11 \ H_2O$ [17].

Vibrational spectroscopy

The vibrational frequencies of crystalline $(NH_4)_4P_2$ S₆ · 2 H₂O are summarized in Tables 4 and 5, along with their estimated intensities and proposed assignments. The bands of the NH₄⁺ ions, H₂O molecules and $[P_2S_6]^{4-}$ units can be clearly distinguished. H₂O and NH₄⁺ stretching vibrations are found above 3000 cm⁻¹ and the corresponding bending vibrations are detected around 1630 and 1400 cm⁻¹ (Table 5). The vibrational modes of NH₄⁺ are best assigned in comparison to those of other ammonium compounds [18, 19]. Below 650 cm⁻¹ the characteristic $[P_2S_6]^{4-}$ stretching and bending modes can be recognized and the lattice vibrations are below *ca*. 150 cm⁻¹. The relevant spectral data of the $[P_2S_6]^{4-}$ unit were compared to those published previously for K₄P₂S₆ · 4 H₂O [8] and Na₄P₂S₆ · 6 H₂O [9].

v1 / A

 v_3 / F_2

(+ H-O-H stretching)

3270 vw

Dependent on the counterion or substituent, the $[P_2S_6]^{4-}$ group can exist in different point groups $(D_{3d}, D_{3h} \text{ and } C_{2h} [12, 20])$. The Raman and IR/FIR

spectra of the $[P_2S_6]^{4-}$ unit of the title compound are best interpreted and assigned with the point group D_{3d} . The vibrational analysis [5, 12, 20] results in

$$\Gamma_{\rm vib}(D_{3d}/[P_2S_6]^{4-}) = 3 \,A_{1g}(R) + 3 \,E_g(R) + A_{1u}({\rm i. a.}) + 2 \,A_{2u}({\rm IR}) + 3 \,E_u({\rm IR}),$$

with R = Raman, IR = infrared and i. a. = inactive. Further details are given in Table 4.

Thermal behavior

The thermal behavior of $(NH_4)_4P_2S_6 \cdot 2H_2O$ was investigated from r.t. up to 400 °C. The decomposition reactions start at around 60 °C and pro-

ceed to *ca.* 170 °C with a mass loss of more than 40 wt.-%. No distinct intermediate step/stage was observed.

In summary, the crystalline ammonium hexathiohypodiphosphate dihydrate, $(NH_4)_4P_2S_6 \cdot 2H_2O$, exhibits remarkable similarities with the recently investigated alkali salt hydrates, in particular $K_4P_2S_6 \cdot 4H_2O$ and $Rb_4P_2S_6 \cdot 6H_2O$ [8]. The crystal structure is dominated by distinct $[P_2S_6]^{4-}$ and NH_4^+ ions, which together with the water molecules are involved in an extended network with N–H···S, O–H···S and N–H···O hydrogen bonds. The relevant part of the vibrational spectrum is best interpreted by $[P_2S_6]^{4-}$ units of D_{3d} symmetry.

- [1] H. Falius, Z. Anorg. Allg. Chem. 1968, 356, 189-194.
- [2] H. Bürger, H. Falius, Z. Anorg. Allg. Chem. 1968, 363, 24-32.
- [3] H. Falius, W. Krause, Z. Anorg. Allg. Chem. **1981**, 477, 21–30.
- W. Krause, H. Falius, Z. Anorg. Allg. Chem. 1983, 496, 80-93; ibid. 1983, 496, 94-104.
- [5] W. Brockner, U. Pätzmann, Z. Naturforsch. 1983, 38a, 92–93.
- [6] C. Sourisseau, J. P. Forgerit, Y. Mathey, J. Solid State Chem. 1983, 49, 134–149.
- [7] E. Prouzet, M. Fukatani, M. Barj, P. Janvier, J. Chem. Soc., Dalton Trans. 1999, 635-637.
- [8] M. Gjikaj, C. Ehrhardt, Z. Anorg. Allg. Chem. 2007, in press.
- [9] T. Fincher, G. LeBret, D. A. Cleary, J. Solid State Chem. 1998, 141, 274–281.
- [10] R. Mercier, J. P. Malugani, B. Fahys, J. Douglade, G. Robert, J. Solid State Chem. 1982, 43, 151–162.
- [11] U. Pätzmann, W. Brockner, Z. Naturforsch. 1987, 42a, 593 – 596.
- [12] C. Hadenfeldt, D. Hoedel, Z. Anorg. Allg. Chem. 1996, 622, 1495 – 1500.

- [13] S. Jörgens, A. Mewis, R. Hoffmann, R. Pöttgen, B. D. Mosel, Z. Anorg. Allg. Chem. 2003, 629, 429–433.
- [14] G. M. Sheldrick, SHELXS/L-97, Programs for Crystal Structure Determination, University of Göttingen, Göttingen (Germany) 1997.
- [15] K. Brandenburg, DIAMOND (version 3.0), Crystal and Molecular Structure Visualization, Crystal Impact – K. Brandenburg & H. Putz GbR, Bonn (Germany) 2004.
- [16] POV-Ray (version 3.5), Trademark of Persistence of Vision Raytracer Pty. Ltd., Williamstown, Victoria (Australia); Copyright Hallam Oaks Pty. Ltd., 1994– 2004.
- [17] M. Pompetzki, M. Jansen, *Monatsh. Chem.* 2002, 133, 975–986.
- [18] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, 5th ed., Wiley, New York, **1997**.
- [19] K.O. Christe, W.W. Wilson, M.A. Petrie, H.H. Michels, J.C. Bottaro, R. Gilardi, *Inorg. Chem.* 1996, 35, 5068-5071.
- [20] S.J. Cyvin, B.N. Cyvin, C. Wibbelmann, R. Becker, W. Brockner, M. Parensen, Z. Naturforsch. 1985, 40a, 709-713.