Syntheses, Spectral, Thermal and Structural Characterization of 2-Hydroxyanilinium and 2-Amino-3-hydroxy-pyridinium Squarates

Okan Zafer Yeşilel ${ }^{\text {a }}$, Hümeyra Paşaoğlu ${ }^{\text {b }}$, O. Ozan Yılan ${ }^{\text {b }}$, and Orhan Büyükgüngör ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir, Turkey
${ }^{\mathrm{b}}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Kurupelit-Samsun, Turkey

Reprint requests to Dr. O. Z. Yeşilel. Fax: +90 0222 2393578. E-mail: yesilel@ogu.edu.tr
Z. Naturforsch. 2007, 62b, 823-828; received January 12, 2007

New salts of 2-hydroxyaniline and 2-amino-3-hydroxypyridine with squaric acid were synthesized and characterized by elemental analyses, IR spectroscopy and thermal analyses (TG, DTG and DTA). The crystal structures of bis(2-hydroxyanilinium) squarate, $\left[\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{NO}^{+}\right)_{2}\left(\mathrm{C}_{4} \mathrm{O}_{4}\right)^{2-}\right](\mathbf{1})$ and bis(2-amino-3-hydroxy-pyridinium) squarate dihydrate, $\left[\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}^{+}\right)_{2}\left(\mathrm{C}_{4} \mathrm{O}_{4}\right)^{2-}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathbf{2})$ were determined by single crystal X-ray diffraction. Both compounds crystallize in the monoclinic system, space group $P 2_{1} / c$. The organic ammonium squarates decompose in two thermal steps.

Key words: Squaric Acid, Squarate Salts, Thermal Analyses

Introduction

Hydrogen bonding is one of the principal intermolecular interactions that frequently play key roles in molecular recognition and self-assembly as well as in crystal engineering research [1] and has been used effectively to predict and design supramolecular assemblies in one, two and three dimensions [2,3]. In the present work, we selected the potentially interesting squaric acid anions. These anions are useful building blocks for constructing crystalline architectures, because of the rigid and flat four-membered ring framework, and their proton donating and accepting capabilities for hydrogen bonding [4]. Squaric acid (3,4-di-hydroxy-3-cyclobutene-1,2-dione, $\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{O}_{4}, \mathrm{H}_{2}$ sq) has been of much interest because of its cyclic structure and possible aromaticity [5-8]. It is a strong acid $\left(\mathrm{p} K_{1}=1.2-1.7\right.$ and $\left.\mathrm{p} K_{2}=3.2-3.5\right)$ and has been used to synthesize new types of organic compounds having potential application in nonlinear optics (NLO) [9, 10]. The crystal structures of hydrogen squarates with the cations derived by protonation of L-arginine [11], R-(-)-1-phenylglycine [12], guanidine [9], 1-phenylethylamine [13], L-(-)-asparagine [14], L-(+)-serine [15], ammonia [16], 2-aminopyrimidine, 3- and 4-aminopyridine [17], L-canavanine [18], methylamine, ethylamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, N, N^{\prime}-dimeth-
ylpiperazine, $N, N, N^{\prime}, N^{\prime}$-tetramethylguanidine [19], Lprolineamide [22], 4,4'-dipyridylacetylene and 1,2-bis (4-pyridyl)ethylene [23], pyrimidine, benzodiazepine [24] are known. Furthermore the crystal structures of squarates with the cations derived by protonation of ammonia [20], 8-aminoquinoline [17], 8-hydroxyquinoline [21], bis(3-aminopropyl)ethylenediamine [25], di(2-aminopyrimidine) [26], bis(tetra-n-propylamine) [27] and thiurea [28] have already been published. Recently, we reported the crystal structures of dinicotinamidium squarate [29], picolinamidium squarate, di-ptoluidinium squarate dihydrate [30], 2-(acetylamino)-4-methylpyridinium hydrogen squarate, pyridine-2carboxamidium hydrogensquarate, 2-methylpyridinium hydrogensquarate monohydrate, and di(2-amino-4-methylpyrimidinium) squarate [31]. As part of our ongoing research, in the present paper, we describe, the synthesis, spectroscopic properties, thermal analysis and crystal structure of 2-hydroxyanilinium squarate (1) and 2-amino-3-hydroxy-pyridinium squarate dihydrate (2). The components are shown in Fig. 1.

(a)

(b)

(c)

Fig. 1. (a) 2-Hydroxyaniline, (b) 2-amino-3-hydroxypyridine, (c) squaric acid.

Fig. 2. IR spectra of $\mathbf{1}(-)$ and $\mathbf{2}(-\cdots-\cdot)$.

Results and Discussion

Compounds $\mathbf{1}$ and $\mathbf{2}$ were prepared by simple mixing of squaric acid and the respective amines in water/methanol mixtures at $50{ }^{\circ} \mathrm{C}$. Crystalline materials formed after cooling the reaction mixtures to r.t.

IR spectra

The IR spectra of bis(2-hydroxyanilinium) squarate (1) and bis(2-amino-3-hydroxy-pyridinium) squarate dihydrate (2) are given in Fig. 2. They show intense bands at 3637 and $3485 \mathrm{~cm}^{-1}$ due to the $\mathrm{O}-\mathrm{H}$ stretching vibrations of the hydrogen-bonded hydroxyl group or water molecules, respectively. In the IR spectra of $\mathbf{1}$, the absorption bands in the frequency range $3372-3301 \mathrm{~cm}^{-1}$ are attributed to the $v\left(\mathrm{NH}_{3}\right)$ vibrations of the 2-hydroxyanilinium ion, while in the IR spectrum of 2 the medium intensity bands at 3298 and $3130 \mathrm{~cm}^{-1}$ correspond to the NH_{2} group and protonated pyridyl group of 2-amino-3-hydroxypyridine. The relatively weak absorption bands at $3014-2576 \mathrm{~cm}^{-1}$ for 1 and 2820$2657 \mathrm{~cm}^{-1}$ for 2 are due to the $v(\mathrm{C}-\mathrm{H})$ vibrations. The $\mathrm{C}=\mathrm{N}$ stretching mode in 2 was observed at $1676 \mathrm{~cm}^{-1}$. The strong absorptions at $1593 \mathrm{~cm}^{-1}$ for $\mathbf{1}$ and $1529 \mathrm{~cm}^{-1}$ for $\mathbf{2}$ are attributed to the mixed vibrations of the squarate ring.

Thermal analyses

The thermal behaviour of the compounds was followed up to $700{ }^{\circ} \mathrm{C}$ in a static air atmosphere (Fig. 3).

The thermal decomposition of $\mathbf{1}$ and $\mathbf{2}$ is similar. For 2, the first stage is related to the dehydration in the temperature range of $52-194{ }^{\circ} \mathrm{C}$. The two moles of water molecules are released by giving an endothermic effect at 129 and $161{ }^{\circ} \mathrm{C}\left(\mathrm{DTG}_{\text {max }}\right)$ (found 9.19, calcd. 9.73%). The second stage, in the temperature

Table 1. Summary of the crystal data, details of data collection and structure determination of $\mathbf{1}$ and $\mathbf{2}$.

	$\mathbf{1}$	$\mathbf{2}$
Chemical formula	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{NO}_{3}$	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{x} 2 \mathrm{H}_{2} \mathrm{O}$
Molecular weight	166.15	370.12
Crystal system	monoclinic	monoclinic
Space group	$P 2_{1} / c$	$P 2_{1} / c$
Color	brown	brown
$a[\AA]$	$9.9173(16)$	$3.8038(3)$
$b[\AA]$	$4.9712(5)$	$17.291(2)$
$c[\AA]$	$15.234(2)$	$12.0786(12)$
$\beta[$ deg $]$	$99.427(13)$	$90.622(8)$
$V\left[\AA^{3}\right]$	$740.89(18)$	$794.38(14)$
Z	4	4
$D_{\text {calc }}\left[\mathrm{g}\right.$ cm $\left.{ }^{-3}\right]$	1.490	1.399
Absorption coefficient μ	0.116	0.117
$\left[\mathrm{~mm}^{-1}\right]$		
$\theta_{\text {max }}[$ deg $]$	28.01	27.51
h, k, l limits	$-11 \leq h \leq 12$,	$-4 \leq h \leq 4$,
	$-6 \leq k \leq 5$,	$-22 \leq k \leq 22$,
$R_{\text {int }}$	$-19 \leq l \leq 19$	$-15 \leq l \leq 15$
$R\left[F^{2} \geq 2 \sigma\left(F^{2}\right)\right]$	0.0462	0.1928
$w R\left(F^{2}\right)$	0.0378	0.0908
Goodness-of-fit on F^{2}	0.1061	0.2661
Number of refined	1.046	1.037
parameters	141	155
Largest difference peak	$0.18,-0.16$	$0.32,-0.27$
and hole [e A ${ }^{-3}$]		

Fig. 3. TG, DTG and DTA curves of $\mathbf{2}$.
range of $201-251^{\circ} \mathrm{C}$, is related to the decomposition of the 2-amino-3-hydroxypyridine molecule. This stage is followed by the decomposition of remaining 2-amino-3-hydroxypyridine and partial decomposition of squarate anions. Upon further heating the remaining organic residue starts to burn exothermically $\left(\mathrm{DTG}_{\text {max }}=463\right.$ and $543{ }^{\circ} \mathrm{C}$).

Fig. 4. The molecular structures of cations and anion in crystals of $\mathbf{1}$ and crystallographic atomic numbering scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown at small arbitrary radii (symmetry code: iv $-x+2,-y,-z+1)$.

Table 2. Selected bond lengths (\AA) and angles (deg) for $\mathbf{1}$.

Bond lengths			
N1-C1	$1.459(2)$	C1-C2	$1.374(2)$
N1-H1A	$0.90(2)$	C2-C3	$1.376(3)$
N1-H1B	$0.94(2)$	C3-C4	$1.382(3)$
N1-H1C	$0.97(2)$	C4-C5	$1.384(2)$
C7-C8	$1.454(2)$	C5-C6	$1.385(2)$
O2-C8	$1.267(2)$	C6-C1	$1.392(2)$
O3-C7	$1.247(2)$	C6-O1	$1.358(2)$
C8-C7	$1.461(2)$		
Bond angles			
C1-N1-H1A	$112.5(12)$	C7-C8-C7 7^{i}	$90.61(11)$
C1-N1-H1B	$110.9(11)$	C8-C7-C8 8^{i}	$89.39(11)$
C1-N1-H1C	$110.5(13)$	C6-O1-H1O	$110.1(14)$
Symmetry code: ${ }^{\mathrm{i}} 2-x,-\mathrm{y}, 1-z$.			

Table 3. Hydrogen-bonding geometry (\AA, deg) for 1.

D-H \cdots A	D-H	H \cdots A	D \cdots A	D-H.. A
N1-H1A $\cdots \mathrm{O}^{1}$	0.89 (2)	2.06 (2)	2.93 (1)	163.1 (17)
N1-H1B \cdots O2	0.94 (2)	1.96 (1)	2.89 (1)	175.0 (15)
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{C} \cdots \mathrm{O} 2^{\text {ii }}$	0.97 (2)	1.83 (2)	2.76 (1)	161.5 (18)
O1-H1O \cdots O3 ${ }^{\text {iii }}$	0.98 (2)	1.61 (2)	2.58 (1)	175 (2)
Symmetry codes: ${ }^{\mathrm{i}} 2-x, 1 / 2+y, 3 / 2-z$; ${ }^{\text {ii }} 2-x, y-1 / 2,3 / 2-z$; iii $2-x,-1-y, 1-z$.				

Crystal structures

Details of the crystal structure of $\mathbf{1}$ are given in Table 1. Each squaric acid molecule donates one hydrogen atom to the NH_{2} group of a 2-hydroxyaniline molecule, forming the bis(2-hydroxyanilinium) squarate salt, $\left[\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{NO}\right)_{2}\left(\mathrm{C}_{4} \mathrm{O}_{4}\right)\right]$ (Fig. 4). The asymmetric unit of $\mathbf{1}$ contains one protonated 2hydroxyanilinium cation and one-half of a centrosymmetric squarate dianion, sq^{2-}. Both ions are essentially planar, the dihedral angle between the squarate and the benzene rings is $34.96(6)^{\circ}$. The sq^{2-} ion has two different $\mathrm{C}-\mathrm{O}$ bonds $[\mathrm{C} 8-\mathrm{O} 2=1.266(1) \mathrm{A} ; \mathrm{C} 7-\mathrm{O} 3=$ $1.247(2) \AA$] which are of approximately equal length and significantly longer than normal $\mathrm{C}=\mathrm{O}$ bonds [32] (Table 2). These lengths indicate a degree of electron delocalization in the sq^{2-} ion.

Fig. 5. The packing diagram of $\mathbf{1}$. The hydrogen bonds are shown by the dashed lines.

Anions and cations are linked to each other by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds as well as $\pi \cdots \pi$ interactions generating a 3D network (Table 3, Fig. 5). Two squarate oxygen atoms have hydrogen bond interactions with N atoms of three 2-hydroxyanilinium molecules, while the other O atoms of the sq^{2-} anion also form hydrogen bonds with the OH group of one 2-hydroxyanilinium molecule.

A summary of crystallographic data and refinement results for $\mathbf{2}$ are given in Table 1. Compound $\mathbf{2}$ contains two protonated 2-amino-3-hydroxy-pyridinium cations and one squarate dianion $\left(\mathrm{sq}^{2-}\right)$, together with two water molecules (Fig. 6). Each squaric acid molecule has donated one H atom to the N atom of a pyridine ring, forming the bis(2-amino-3-hydroxy-pyridinium) squarate dihydrate salt. The sq^{2-} ion has one $\mathrm{C}-\mathrm{O}$ bond $[\mathrm{C} 7-\mathrm{O} 2=1.323(5) \AA$ A $]$ that is shorter than a normal single $\mathrm{C}-\mathrm{O}$ bond ($1.426 \AA$ in methanol, $1.36 \AA$ in acetic acid [32]), and one intermediate $\mathrm{C}-\mathrm{O}$ bond $[\mathrm{C} 6-\mathrm{O} 3=1.254(4) \AA$] that is longer than a normal

Fig. 6. Fundamental units in the crystal structure of $\mathbf{2}$ and atomic numbering scheme adopted. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown at small arbitrary radii (symmetry code: ${ }^{\text {iii }} x$ $1, y, z$).

Fig. 7. The packing diagram of 2. The hydrogen bonds are shown by dashed lines.

Table 4. Selected bond lengths (\AA) and angles (deg) for $\mathbf{2}$.

Bond lengths			
N1-C1	$1.339(5)$	C2-C3	$1.364(6)$
N1-C5	$1.374(6)$	C3-C4	$1.394(6)$
N2-C1	$1.323(6)$	C-C5	$1.349(7)$
O1-C2	$1.32(6)$	C6-C7	$1.455(5)$
O2-C7	$1.323(5)$	C6-C7	$1.456(5)$
O3-C6	$1.254(4)$	C7-C6	$1.456(5)$
C1-C2	$1.438(6)$		
Bond angles			
C1-N2-H6	$123(4)$	C7-C6-C7	$90.1(3)$
C1-N2-H7	$112(5)$	C6-C7-C6	$89.9(3)$
C1-N1-H1	$107(4)$	C2-O1-H5	$107(4)$

Symmetry code: ${ }^{i} 2-x, 1-y, 1-z$.
$\mathrm{C}=\mathrm{O}$ bond. The $\mathrm{C} 1-\mathrm{N} 1$ bond length $[1.339(5) \AA$ in in the pyridine ring is approximately equal to the length of a previously reported $\mathrm{C}-\mathrm{N}$ double bond [30] (Table 4).

Table 5. Hydrogen bonding geometry (\AA, deg) for 2.

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{1}$	$1.14(7)$	$1.81(7)$	$2.726(5)$	$135(5)$
$\mathrm{N} 2-\mathrm{H} 6 \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.81(5)$	$2.14(6)$	$2.944(6)$	$170(6)$
$\mathrm{N} 2-\mathrm{H} 7 \cdots \mathrm{O} 1$	$0.87(7)$	$2.28(7)$	$2.697(6)$	$110(5)$
$\mathrm{N} 2-\mathrm{H} 7 \cdots \mathrm{O} 4$	$0.87(7)$	$2.12(7)$	$2.970(6)$	$166(7)$
$\mathrm{O} 1-\mathrm{H} 5 \cdots \mathrm{O} 2$	$1.43(12)$	$1.21(11)$	$2.606(5)$	$162(9)$
$\mathrm{O} 4-\mathrm{H} 9 \cdots \mathrm{O} 3^{\text {iii }}$	$1.25(9)$	$2.02(8)$	$2.968(5)$	$129(5)$
$\mathrm{C} 5-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	$1.15(5)$	$2.20(5)$	$3.339(6)$	$169(4)$
Symmetry codes: ${ }^{\mathrm{i}} 1-x, y-1 / 2,1 / 2-z$; ${ }^{\text {ii }} x-1,-1 / 2-y, z-3 / 2 ;$				
iii $x-1, y, z$.				

The crystal packing of $\mathbf{2}$ is again three-dimensional, constructed from van der Waals interactions and $\pi \cdots \pi$ interactions between parallel sheets held together by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 5). Anions and cations interact through a pair of selfcomplimentary $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds to form a cyclic
$\mathrm{R}_{2}{ }^{2}(9)$ ring [33] (Fig. 7). The $\mathrm{N} 1 \cdots \mathrm{O} 3$ [2.726(5) Å] distance is shorter than the $\mathrm{N} 2 \cdots \mathrm{O} 2$ [2.944(6) \AA] distance, in spite of the facts that the formal positive charge resides on the $\mathrm{N} 1^{+} \mathrm{H}$ group and that positively charged hydrogen bonds are expected to be stronger [17].

Experimental Section

Materials and measurements

All chemicals used were analytical reagent products. The IR spectra were recorded in the $4000-400 \mathrm{~cm}^{-1}$ region with a Mattson 1000 FT-IR spectrometer using KBr pellets. A Perkin Elmer Diamond TG/DTA thermal analyzer was used to record simultaneously TG, DTG and DTA curves in static air atmosphere at a heating rate of $10 \mathrm{~K} \mathrm{~min}^{-1}$ in the temperature range $20-700{ }^{\circ} \mathrm{C}$ using platinum crucibles.

Preparation of the squarate salts

Squaric acid ($456 \mathrm{mg}, 4 \mathrm{mmol}$) and 2-hydroxyaniline ($873 \mathrm{mg}, 8 \mathrm{mmol}$) or 2-amino-3-hydroxypyridine (881 mg , $8 \mathrm{mmol})$ were dissolved in a water/methanol (20 mL) mixture ($1: 1$) and the solutions were heated to $50{ }^{\circ} \mathrm{C}$ in a temperature-controlled bath and stirred for 1 h . The reaction mixtures were then slowly cooled to r.t. The crystals formed were filtered and washed with 10 mL of water
and methanol and dried in air. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$ (1): C 57.83 , H 4.85, N 8.43; found C 57.80 , H 4.85, N 8.44 . Calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{8}(\mathbf{2})$: $\mathrm{C} 45.41, \mathrm{H} 4.90, \mathrm{~N} 15.13$; found C 45.44, H 4.84, N 15.21.

Crystallographic analyses

Data collections were performed on a STOE IPDS II image plate detector using $\operatorname{Mo} K_{\alpha}$ radiation $(\lambda=0.71073 \AA)$. Intensity data were collected at 296 K . Data collection and cell refinement: X-AREA [34]. Data reduction and absorption correction by integration: X-RED [34]. The structures were solved by Direct Methods using SIR97 [35], and anisotropic displacement parameters were applied to nonhydrogen atoms in a full-matrix least-squares refinement based on F^{2} using Shelxl-97 [36]. Molecular drawings were obtained using ORTEP-III [37].

Supplementary material

CCDC 605867 and 605868 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgement

This work was supported by the Eskişehir Osmangazi University by project No 200619013.
[1] J.M. Lehn in Supramolecular Chemistry: Concepts and Perspectives, VCH, Weinheim, 1995.
[2] S. Konar, E. Zangrando, N. R. Chaudhuri, Inorg. Chim. Acta 2003, 355, 264-271.
[3] R.J. Tao, S. Q. Zang, N.H. Hu, Q.L. Wang, Y.X. Cheng, J. Y. Niu, D. Z. Liaou, Inorg. Chim. Acta 2003, 353, 325-331.
[4] M. T. Reetz, S. Hooger, K. Harms, Angew. Chem. Int. Ed. Engl. 1994, 33, 181-183.
[5] G.M. Frankenbach, M. A. Beno, A.M. Kini, J. M. Williams, U. Welp, J. E. Thompson, M. H. Whangbo, Inorg. Chim. Acta 1992, 192, 195-200.
[6] A. Weiss, E. Riegler, I. Alt, H. Böhme, C. Robl, Z. Naturforsch. 1986, 41b, 18-24.
[7] A. Weiss, E. Riegler, C. Robl, Z. Naturforsch. 1986, 41b, 1333-1336.
[8] C. Robl, A. Weiss, Z. Naturforsch. 1986, 4lb, 1341 1345.
[9] T. Kolev, H. Preut, P. Bleckmann, V. Radomirsha, Acta Crystallogr. 1997, C53, 805-807.
[10] T. M. Kolev, D. Y. Yancheva, S. I. Stoyanov, Adv. Funct. Mater. 2004, 14, $799-805$.
[11] O. Angelova, R. Petrova, V. Radomirska, T. Kolev, Acta Crystallogr. 1996, C52, 2218-2220.
[12] O. Angelova, V. Velichka, T. Kolev, V. Radomirska, Acta Crystallogr. 1996, C52, 3252-3256.
[13] T. Kolev, R. Stahl, H. Preut, L. Koniczek, P. Bleckmann, V. Radomirska, Z. Kristallogr. NCS 1997, 212, 417-418.
[14] T. Kolev, R. Stahl, H. Preut, L. Koniczek, P. Bleckmann, V. Radomirska, Z. Kristallogr. NCS 1998, 213, 167-168.
[15] T. Kolev, R. Stahl, H. Preut, P. Bleckmann, V. Radomirska, Z. Kristallogr. NCS 1998, 213, 169-170.
[16] T. Kolev, Z. Glavcheva, R. Petrova, O. Angelovs, Acta Crystallogr. 2000, C56, 110-112.
[17] V. Bertolasi, P. Gilli, V. Ferretti, G. Gilli, Acta Crystallogr. 2001, B57, 591-598.
[18] T. Kolev, Z. Glavcheva, R. Stahl, H. Preut, P. Bleckmann, V. Radomirska, Z. Kristallogr. NCS 1999, 214, 193-194.
[19] S. Mathew, G. Paul, K. Shivasankar, A. Choudhury, C. N. R. Rao, J. Mol. Struct. 2002, 641, $263-$ 279.
[20] S. L. Georgopoulos, R. Diniz, B. L. Rodrigues, M. I. Yoshida, L. F. C. Oliveira, J. Mol. Struct. 2005, 753, 147-153.
[21] T. Kolev, S.S. Fiser, M. Spiteller, W.S. Sheldrick,
H. Mayer-Figge, Acta Crystallogr. 2005, E61, o1469 o1471.
[22] T. Kolev, D. Yancheva, M. Spiteller, W. S. Sheldrick, H. Mayer-Figge, Acta Crystallogr. 2006, E62, o463o465.
[23] M. B. Zaman, M. Tomura, Y. Yamashita, Acta Crystallogr. 2001, C62, 621-624.
[24] R. Mattes, J. Ebbing, A. Gruss, J. Koppe, K. Majcher, Z. Naturforsch. 2003, 58B, 27-35.
[25] H. Paşaoğlu, O. O. Yilan, Acta Crystallogr. 2006, E62, o1160-o1162.
[26] A. Köroğlu, Acta Crystallogr. 2006, E62, o1036o1037.
[27] C. K. Lam, T. C. W. Mak, Crystallogr. Eng. 2000, 3, $33-40$.
[28] C. K. Lam, T. C. W. Mak, Tetrahedron 2000, 56, 6657 6665.
[29] A. Bulut, O. Z. Yeşilel, N. Dege, H. Icbudak, H. Olmez, O. Büyükgüngör, Acta Crystallogr. 2003, C59, o7270729.
[30] I. Ucar, A. Bulut, O. Z. Yeşilel, O. Büyükgüngör, Acta Crystallogr. 2004, C60, o585-o588.
[31] O. Z. Yeşilel, M. Odabasoglu, H. Olmez, O. Büyükgüngör, Z. Naturforsch. 2006, 56b, 1243-1248.
[32] J. A. Kanters, A. Schouten, J. Kroon, E. Grech, Acta Crystallogr. 1991, C47, 807-810.
[33] J. Bernstein, R. E. Davis, N. L. Chang, Angew. Chem. Int. Ed. Engl. 1995, 34, 1555-1573.
[34] X-AREA (version 1.18) and X-RED32 (version 1.04). Stoe \& Cie. Darmstadt (Germany) 2002.
[35] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 1999, 32, 115-119.
[36] G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen (Germany) 1997.
[37] K. Johnson, M. N. Burnett, ORTEP-III (version 1.0.2), Rep. ORNL-6895, Oak Ridge National Laboratory, Oak Ridge, TN (USA) 1996.

