Syntheses, Spectroscopy and Crystal Structures of (R)- N -(1-Aryl-ethyl)salicylaldimines and $\left[\operatorname{Rh}\{(R)-N\right.$-(1-aryl-ethyl)salicylaldiminato $\}\left(\boldsymbol{\eta}^{4}\right.$-cod)] Complexes

Mohammed Enamullah ${ }^{\text {a }}$, A. K. M. Royhan Uddin ${ }^{\text {a }}$, Anne-Christine Chamayou ${ }^{\text {b }}$, and Christoph Janiak ${ }^{\text {b }}$
a Department of Chemistry, Jahangirnagar University, Dhaka-1342, Bangladesh
${ }^{\text {b }}$ Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstr. 21, D-79104 Freiburg, Germany

Reprint requests to Prof. M. Enamullah. Fax: +8802-7708069.
E-mail: menam@juniv.edu/enamullahju@yahoo.com or to
Prof. C. Janiak. Fax: +49-7612036147. E-mail: janiak @ uni-freiburg.de
Z. Naturforsch. 2007, 62b, 807 -817; received December 21, 2006

Condensation of salicylaldehyde with enantiopure (R)-(1-aryl-ethyl)amines yields the enantiopure Schiff bases $(R)-N$-(1-aryl-ethyl)salicylaldimine (HSB*; aryl = phenyl, 2-methoxyphenyl, 3methoxyphenyl, 4-methoxyphenyl (4), 4-bromophenyl (5), 2-naphthyl). These Schiff bases readily react with dinuclear (acetato) $\left(\eta^{4}\right.$-cycloocta-1,5-diene)rhodium $(\mathrm{I}),\left[\operatorname{Rh}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\left(\eta^{4} \text {-cod) }\right]_{2}\right.$, to afford the mononuclear complexes, cyclooctadiene-((R)-N-(1-aryl-ethyl)salicylaldiminato- $\left.\kappa^{2} N, O\right)$ rhodium $(\mathrm{I}),\left[\mathrm{Rh}\left(\mathrm{SB}^{*}\right)\left(\eta^{4}-\mathrm{cod}\right)\right]\left(\mathrm{SB}^{*}=\right.$ deprotonated chiral Schiff base $=$ salicylaldiminate; aryl $=$ phenyl (7), 2-methoxyphenyl, 4-methoxyphenyl, 4-bromophenyl, 2-naphthyl). The complexes have been characterized by IR, UV/vis, ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR and mass spectrometry, optical rotation as well as by single-crystal X-ray structure determination for $\mathbf{4}, \mathbf{5}$ and 7 . The structure of $\mathbf{5}$ shows $\mathrm{C}-\mathrm{Br} \cdots \pi$ contacts. Compound 7 is only the second example of a $\operatorname{Rh}\left(\eta^{4}\right.$-cod) complex with a six-membered $\mathrm{Rh}-\mathrm{N}, \mathrm{O}$-chelate ring.

Key words: (R)-Schiff Bases, $\operatorname{Rh}\left(\eta^{4}\right.$-cod) Complexes, Chelate Complexes, π Interactions, Optical Activity, Chirality

Introduction

The synthesis of chiral metal complexes is of constant interest [1]. There are continuous developments of optically active Schiff base ligands (HSB*) and their transition metal complexes for applications as chiral catalysts [2-9]. Examples of organometallic compounds with HSB* ligands are the half-sandwich complexes $\left[\operatorname{Ru}\left(\mathrm{SB}^{*}\right) X\left(\eta^{6}\right.\right.$-benzene $\left.)\right]\left\{\mathrm{SB}^{*}=(S)-N\right.$ -1-phenylethylsalicylaldiminate; $X=\mathrm{Cl}, 4-/ 2-\mathrm{Me}-\mathrm{py}$, $\left.\mathrm{PPh}_{3}\right\},\left[\mathrm{M}\left(\mathrm{SB}^{*}\right) X\left(\eta^{6}\right.\right.$-arene $\left.)\right](\mathrm{M}=\mathrm{Ru}(\mathrm{II}), \mathrm{Os}(\mathrm{II})$; $X=\mathrm{Cl}, \mathrm{I})[10,11],\left[\mathrm{Ru}\left(\mathrm{SB}^{*}\right) X\left(\eta^{6}-p\right.\right.$-cymene $\left.)\right](X=$ various monodentate ligands) $[12,13]$, and $\left[\mathrm{Rh}\left(\mathrm{SB}^{*}\right)\right.$ -$\left(\eta^{4}\right.$-cod $\left.)\right]\left\{\mathrm{SB}^{*}=(S)-(\alpha)\right.$-(2-pyridyl)-salicylaldiminate\} [14].

Bidentate (HSB) and tetradentate $\left(\mathrm{H}_{2} \mathrm{SB}\right)$ Schiff bases react easily with dinuclear $\left[\operatorname{Rh}(\mu-X)\left(\eta^{4} \text {-cod }\right)\right]_{2}$ ($X=\mathrm{Cl}, \mathrm{OMe}, \mathrm{O}_{2} \mathrm{CMe}$; cod $=1,5$-cyclooctadiene) to give mononuclear $\left[\operatorname{Rh}(\mathrm{SB})\left(\eta^{4}\right.\right.$-cod) $)$ ($\mathrm{SB}=$ salicylaldiminate) and dinuclear $\left[\left\{\operatorname{Rh}\left(\eta^{4}-\operatorname{cod}\right)\right\}_{2}(\mathrm{SB})\right](\mathrm{SB}=$
bis-salicylaldiminate) complexes [14-20]. We recently synthesized $\operatorname{Rh}\left(\eta^{4}\right.$-cod) complexes containing chiral amino acids, chiral amino alcohols and tetradentate Schiff bases as co-ligands starting from dinuclear $\left[\mathrm{Rh}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\left(\eta^{4} \text {-cod }\right)\right]_{2}[21-24]$. In continuation, we report here the syntheses and characterizations of enantiopure Schiff base compounds HSB* and their $\left[\operatorname{Rh}\left(\mathrm{SB}^{*}\right)\left(\eta^{4}\right.\right.$-cod $\left.)\right]$ complexes $\left[\mathrm{SB}^{*}=(R)\right.$ -N-(1-aryl-ethyl)salicylaldiminate, with $X=$ phenyl, 2methoxyphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 4-bromophenyl, 2-naphthyl].

Results and Discussion

Condensation of the salicylaldehyde with enantiopure $(R)-(1$-aryl-ethyl)amines yields the optically active (R)- N-(1-aryl-ethyl)salicylaldimines [HSB*; aryl $=$ phenyl (1), 2-methoxyphenyl (2), 3-methoxyphenyl (3), 4-methoxyphenyl (4), 4-bromophenyl (5), 2-naphthyl (6)] (Scheme 1). Reaction of dinuclear

Scheme 1. Synthetic route to (R)- N-(1-aryl-ethyl)salicylaldimines (HSB*; 1-6).

Scheme 2. Synthetic route to $\operatorname{Rh}\left(\mathrm{SB}^{*}\right)\left(\eta^{4}-\operatorname{cod}\right)(7-11)$.
$\left[\operatorname{Rh}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\left(\eta^{4} \text {-cod }\right)\right]_{2} \quad(\operatorname{cod}=1,5-$ cyclooctadiene) with (R)- N-(1-aryl-ethyl)salicylaldimine in toluene $/ \mathrm{MeOH}$ affords the mononuclear complexes, cyclooctadiene- $\{(R)$ - N-(1-aryl-ethyl)salicylaldimin-ato- $\left.\kappa^{2} N, O\right\}$-rhodium $(\mathrm{I}),\left[\operatorname{Rh}\left(\mathrm{SB}^{*}\right)\left(\eta^{4}\right.\right.$-cod $\left.)\right]\left(\mathrm{SB}^{*}=\right.$ deprotonated chiral Schiff base $=$ salicylaldiminate) (7-11), in Scheme 2.

The ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectra of the Schiff bases $\mathbf{1 - 6}$ and their complexes $\mathbf{7 - 1 1}$ correspond well to those of related compounds [2,3,9-11, 25-35]. The presence of $o / m / p-\mathrm{OCH}_{3}, p-\mathrm{Br}$ and 2-naphthyl groups in 2-6 shifts the proton signals downfield by $0.1-0.5 \mathrm{ppm}$ in contrast to those in $\mathbf{1}$ due to their electron donating inductive effect.

In the ${ }^{1} \mathrm{H}$ NMR spectra the signals for the exo- and endo-methylene protons of the rhodium-coordinated 1,5 -cyclooctadiene in $\left[\operatorname{Rh}\left(\mathrm{SB}^{*}\right)\left(\eta^{4}\right.\right.$-cod $\left.)\right](7-11)$ each appear as multiplets at about 1.90 and 2.40 ppm , respectively. The olefinic protons show two multiplets at 3.6-3.7 and $4.5-4.6 \mathrm{ppm}$ (except for 8, see be-
low). The upfield resonance at $3.6-3.7 \mathrm{ppm}$ is assigned to protons 'trans to O ', and the downfield resonance at $4.5-4.6 \mathrm{ppm}$ to protons 'trans to N ' [20, $24-$ 28, 30-35].

Complex $\left[\operatorname{Rh}\left(\mathrm{SB}^{*}\right)\left(\eta^{4}\right.\right.$-cod)] (8) with $\mathrm{SB}^{*}=$ (R)- N -(1-(2-methoxyphenyl-ethyl)salicylaldiminate shows four multiplets at $3.7,4.3,4.4$ and 4.5 ppm . The ortho $-\mathrm{OCH}_{3}$ substituent on the phenyl ligand leads to stronger steric interactions with the olefin protons in comparison to metalpara- OCH_{3} and thereby creates sufficient differences in chemical shifts between 'left' and 'right' protons. Similar olefin proton resonances are observed in $[\mathrm{M}(\mathrm{sal}=\mathrm{N}$ o / p-toluene $)\left(\eta^{4}\right.$-cod)] ($\mathrm{M}=\mathrm{Rh}$, Ir) [20], showing three multiplets for o-toluene and two multiplets for p-toluene (see Table 1). Also, the dinuclear complexes $\left[\left(\operatorname{Rh}\left(\eta^{4} \text {-cod }\right)\right)_{2}(\right.$ salophen $\left.)\right][24]$ and $[\operatorname{Rh}(\mu-\mathrm{hp} / \mu$-mhp) (η^{4}-cod) $]_{2}$ [27] show four multiplets.

In CDCl_{3} the proton signal for $\mathrm{CH}=\mathrm{N}$ of the Schiff bases at $8.2-8.4 \mathrm{ppm}$ is shifted upon Rh complexa-

Table 1. ${ }^{13} \mathrm{C}$ NMR spectral data (δ in ppm) and $J\left({ }^{103} \mathrm{Rh}-{ }^{13} \mathrm{C}\right)(\mathrm{Hz})$ in the cod region in $\mathrm{Rh}\left(\eta^{4}\right.$-cod) complexes in CDCl_{3} (unless noted otherwise).

complexes	methylene carbons	olefinic carbons $\left(J\left({ }^{103} \mathrm{Rh}-{ }^{13} \mathrm{C}\right)\right.$ in parentheses)			
		trans to N		trans to O	
		'left'	'right' ${ }^{\text {a }}$	'left'	'right' ${ }^{\text {a }}$
$\overline{\left[\operatorname{Rh}\left(\mathrm{SB}^{*}\right)\left(\eta^{4}-\mathrm{cod}\right)\right](7)}$	32.5, 32.0, 29.6, 29.2	85.7 (12.1)	85.3 (12.3)	73.5 (14.2)	71.4 (14.6)
$\left[\operatorname{Rh}\left(\mathrm{SB}^{*}\right)\left(\eta^{4}\right.\right.$-cod) $](\mathbf{8})$	33.1, 31.7, 30.1, 28.9	85.0 (12.6)	84.0 (12.0)	74.7 (13.4)	71.6 (14.5)
$\left[\mathrm{Rh}\left(\mathrm{SB}^{*}\right)\left(\eta^{4}\right.\right.$-cod) $](9)$	32.5, 32.0, 29.6, 29.1	85.7 (12.2)	85.3 (12.2)	73.6 (14.0)	71.2 (14.6)
$\left[\operatorname{Rh}\left(\mathrm{SB}^{*}\right)\left(\eta^{4}\right.\right.$-cod) $](\mathbf{1 0})$	31.1, 30.7, 28.2, 27.9	84.5 (11.8)	84.2 (12.2)	72.0 (14.6)	70.2 (14.1)
$\left[\operatorname{Rh}\left(\mathrm{SB}^{*}\right)\left(\eta^{4}\right.\right.$-cod) $](11)$	32.6, 32.1, 29.6, 29.2	85.8 (11.6)	85.4 (12.3)	73.7 (14.3)	71.4 (14.2)
$\left[\mathrm{Rh}(\mathrm{N}, \mathrm{O})\left(\eta^{4}\right.\right.$-cod) ${ }^{\text {[} 35]}{ }^{\text {b }}$	32.1, 31.9, 29.6, 29.5	81.6	81.3	75.4	75.1
[$\mathrm{Rh}($ sal $=\mathrm{N}-o-$ tol $)\left(\eta^{4}\right.$-cod) $]$ [20]	31.7, 31.3, 29.3, 28.8	85.1 (12.5)	84.6 (12.5)	74 (17.5)	72.5 (15.0)
[(Rh(η^{4}-cod) $)_{2}$ (salophen)] [24]	32.6, 30.3, 29.5, 27.9	85.8 (11.7)	84.3 (11.8)	74.3 (14.6)	69.7 (14.4)
[(Rh(η^{4}-cod) $)_{2}$ (salophen)] [20]	32.5, 30.3, 29.5, 27.9	85.8 (12.5)	84.3 (12.5)	74.3 (15.0)	69.7 (15.0)
$\left[\operatorname{Rh}(\mu-\mathrm{hp} /-\mathrm{mhp})\left(\eta^{4} \text {-cod }\right)\right]_{2}[27]^{\text {c }}$	$\begin{aligned} & 35.0,33.0,30.1,29.0 / 33.4 \text {, } \\ & 32.1,30.5,29.2 \end{aligned}$	89.1/87.7	772/76.6	74.4/72.8	70.9/72.2
$\left[\mathrm{Rh}\left(\mathrm{sal}=\mathrm{N}-\mathrm{CH}_{3} /-\mathrm{Ph}\right)\left(\eta^{4}\right.\right.$-cod) $][20]$	32.1, 28.9/31.3, 29.0	85.3 (12.5)	4.7 (12.5)	72.8 (12	3.0 (12.5)
[$\mathrm{Rh}(\mathrm{sal}=\mathrm{N}-p-\mathrm{tol})\left(\eta^{4}\right.$-cod)] [20]	31.4, 29.0		2.5)		(15)
[$\mathrm{Rh}\left(o-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NH}\right)\left(\eta^{4}\right.$-cod) $]$ [28]	31.3, 29.4				
[$\left\{\mathrm{Rh}\left(\eta^{4} \text {-cod) }\right\}_{2}(\mathrm{dcbi})\right]\left(\mathrm{NHEt}_{3}\right)$ [29]	31.2, 30.0		13)		
$\underline{[} 2 \mathrm{Rh}\left(\eta^{4}\right.$-cod $\left.)\right\}_{2}$ (salen) $][24]$	31.7, 28.8		1.9)		14.2)

${ }^{\mathrm{a}}$ 'left' and 'right' is an arbitrary assignment for the olefinic carbons to either side of a plane bisecting the $\mathrm{C}=\mathrm{C}$ bond; ${ }^{\mathrm{b}}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$; ${ }^{\mathrm{c}}$ in [D_{8}]toluene.
tion to higher field (at 7.8 ppm) and splits into a symmetrical doublet by about $2.0 \mathrm{~Hz}(J)$ due to ${ }^{103} \mathrm{Rh}-{ }^{1} \mathrm{H}$ coupling [17, 19]. In [D D_{6}]DMSO this signal remains a singlet at $8.0-8.1 \mathrm{ppm}$ for the complexes.

In the ${ }^{13} \mathrm{C}$ NMR spectra the cod methylene carbon atoms in 7-11 give four singlets of equal intensity at $\delta=29-31 \mathrm{ppm}$ in contrast to only one singlet in $\left[\mathrm{Rh}\left(\mathrm{O}_{2} \mathrm{CMe}\right)\left(\eta^{4} \text {-cod }\right)\right]_{2}$ [22] and $[\mathrm{Rh}($ aminocarboxylato) (η^{4}-cod)] [22, 23]. Similarly, the four olefinic carbon atoms of cod give four doublets due to ${ }^{103} \mathrm{Rh}-$ ${ }^{13} \mathrm{C}$ coupling, two at lower field ($84-86 \mathrm{ppm}$) which are assigned to ' C trans to N ', the other two at higher field ($70-75 \mathrm{ppm}$) assigned to 'C trans to O ' (see Table 1) [16, 20, 24, 26, 29, 30]. The observed ${ }^{103} \mathrm{Rh}-$ ${ }^{13} \mathrm{C}$ (olefin) spin-spin coupling constants for ' C trans to N ' $(c a . J=12 \mathrm{~Hz})$ and 'C trans to O ' ($c a . J=$ 14 Hz) agree with data for related mononuclear $\operatorname{Rh}\left(\eta^{4}\right.$ cod) complexes [16, 20, 24, 27, 30, 35] (see Table 1). The occurrence of four singlets and four doublets is explained by steric and magnetic anisotropy effects in addition to the trans influence of the coordinated N, O chelate on the carbon resonances [27]. The observed chemical shift difference between the 'left' and 'right' carbon atoms trans to the same donor atom are larger for 'trans to O ' than for 'trans to N ' in 7-11.

Mass spectra of the Schiff bases $\mathbf{1 - 6}$ and the $\left[\operatorname{Rh}\left(\mathrm{SB}^{*}\right)\left(\eta^{4}\right.\right.$-cod $\left.)\right]$ complexes $\mathbf{7 - 1 1}$ show the parent ion peaks. UV/vis Electronic spectra of the rhodium complexes feature two broad bands with absorption
maxima at $\lambda_{\max }=234-244 \mathrm{~nm}\left(\varepsilon_{\max }=23750-\right.$ $59700 \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~cm}^{-1}$), associated with the intra-ligand $\pi \rightarrow \pi^{*}$ transition, and at $\lambda_{\text {max }}=388-394 \mathrm{~nm}$ $\left(\varepsilon_{\text {max }}=5000-14700 \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~cm}^{-1}\right)$, associated with the metal-to-ligand charge transfer (MLCT) transitions of $\mathrm{Rh} \rightarrow\left(\eta^{4}\right.$-cod $)$ and $\mathrm{Rh} \rightarrow \mathrm{SB}^{*}$ [21-23]. The polarimetric measurements in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{CH}_{3} \mathrm{Cl}$ exhibit rotations to the left between -95° and -170° at 578 nm and $20^{\circ} \mathrm{C}$ for enantiopure R-Schiff bases, and rotations to the right between $+200^{\circ}$ and $+333^{\circ}$ at 578 nm and $20^{\circ} \mathrm{C}$ for the $\mathrm{Rh}\left(R-\mathrm{SB}^{*}\right)$-complexes.

The single-crystal structures of the enantiopure Schiff bases 4 and 5 confirm the molecular composition and absolute configuration. The molecular structures are depicted in Figs. 1 and 2, respectively. Bond

Fig. 1. Molecular structure of $\mathbf{4}$ with intramolecular hydrogen bond. Thermal ellipsoids with 50% probability. Selected bond lengths (A) and angles (deg): C13-O2 1.381(3), C7-N 1.275(3), N-C8 1.481(3); C7-N-C8 119.1(2). Hydrogen bonding interaction (dashed line) as $\mathrm{O}-\mathrm{H}, \mathrm{H} \cdots \mathrm{N}$, $\mathrm{O} \cdots \mathrm{N}, \mathrm{O}-\mathrm{H} \cdots \mathrm{N}\left(\AA,{ }^{\circ}\right): 1.00(3), 1.68(5), 2.580(2), 148(3)$.

Scheme 3. Bond lengths (\AA) for $\mathrm{Rh}-\mathrm{C}_{\mathrm{cod}}$ and $\mathrm{C}=\mathrm{C}_{\text {cod }}$ in the two symmetry-independent molecules in 7.

Fig. 2. Molecular structure of 5 with intramolecular hydrogen bond. Thermal ellipsoids with 50% probability. Selected bond lengths (\AA) and angles (deg): C13-Br 1.908(3), C7-N $1.275(3), \mathrm{N}-\mathrm{C} 8$ 1.473(3); $\mathrm{C} 7-\mathrm{N}-\mathrm{C} 8$ 118.5(2). Hydrogen bonding interaction (dashed line) as $\mathrm{O}-\mathrm{H}, \mathrm{H} \cdots \mathrm{N}, \mathrm{O} \cdots \mathrm{N}$, $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}(\AA, \operatorname{deg}): 0.92(4), 1.72(4), 2.590(3), 156(4)$.
lengths are within the expected range. The expected intramolecular hydrogen bond is observed between the salicyl-OH group and the imine nitrogen atom [36].

The molecular packing of $\mathbf{4}$ does not show $\pi-\pi$ interactions [37-39] but only a C-H $\cdots \pi$ interaction $\mathrm{C} 16-\mathrm{H} \cdots(\mathrm{C} 10-\mathrm{C} 15)$ with $\mathrm{H} \cdots$ centroid $2.95 \AA$ and $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ plane 60° [39-42]. The molecular packing in the structure of 5 is influenced by a C-H $\cdots \pi$ interaction C12-H $\cdots(\mathrm{C} 1-\mathrm{C} 6)$ with $\mathrm{H} \cdots$ centroid $2.71 \AA$, C$\mathrm{H} \cdots$ centroid 138° and $\mathrm{C}-\mathrm{H} \cdots \pi$ plane 52°, and also by $\mathrm{C}-\mathrm{Br} \cdots \pi$ contacts to the salicyl ring (C1-C6) with $\mathrm{Br} \cdots$ centroid $3.816(1) \AA, \mathrm{C}-\mathrm{Br} \cdots$ centroid 166.0° and C-Br $\cdots \pi$ plane 73.4° as illustrated in Fig. 3 [43].

The molecular structure of the rhodium complex 7 proves the suggested N, O-chelation of the deprotonated Schiff base salicylaldiminato ligand (Fig. 4). Again bond lengths and their variations are as expected [$12,16,23,24,26,27]$. Compound 7 is only the second example of a $\operatorname{Rh}\left(\eta^{4}\right.$-cod) complex with a six-membered $\mathrm{Rh}-\mathrm{N}, \mathrm{O}$-chelate ring. The other example is the dinuclear compound $\left[\left\{\operatorname{Rh}\left(\eta^{4}-\operatorname{cod}\right)\right\}_{2}\left(N, N^{\prime}\right.\right.$ (1,2 -phenylene)bis-(salicylaldiminato))] with an achiral tetradentate Schiff base ligand [15, 16, 44]. The cod-ligand in 7 is bound slightly asymmetrically (Scheme 3) which reflects the different trans nitrogen

Fig. 3. Packing diagram of 5 to illustrate the $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\mathrm{C}-$ $\mathrm{Br} \cdots \pi$ contacts as dashed lines to the salicyl ring centroid.

Fig. 4. Molecular structure of the two symmetry-related molecules of 7. Selected bond lengths (A) and angles (deg): Rh1-O1 2.0268(13), Rh1-N1 2.085(2), Rh1-C cod $^{2.118(3)-~}$ 2.161(3), Rh2-O2 2.0388(13), Rh2-N2 2.0840(19), Rh2$\mathrm{C}_{\mathrm{cod}} 2.117(4)-2.168(4) ; \mathrm{O} 1-\mathrm{Rh} 1-\mathrm{N} 1$ 90.93(7), O2-Rh2-N2 90.28(6).
or oxygen donor atoms and the 'left' and 'right' differentiation as mirrored in the four olefinic ${ }^{13} \mathrm{C}$ NMR resonances.
The unit cell in the crystal structure of $\mathbf{7}$ contains two symmetry-independent molecules which superficially appear related by a pseudo two-fold axis. No classical hydrogen bonds, $\pi-\pi$ interactions or $\mathrm{C}-\mathrm{H} \cdots \pi$
contacts are discernible in 7. Van der Waals interactions between the molecules of 7 with their hydrophobic surface seem to control the packing.

Experimental Section

All reactions were carried out under an atmosphere of dry nitrogen using standard Schlenk techniques. Solvents were dried and distilled under nitrogen prior to use: toluene, diethyl ether over Na metal; methanol over CaO ; chloroform over CaCl_{2}. IR spectra were recorded on a Bruker Optik IFS 25 spectrometer from KBr disks at ambient temperature. UV/vis Spectra were obtained with a Shimadzu UV 3150 spectrophotometer in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $20^{\circ} \mathrm{C}$. Elemental analyses were carried out on a Vario EL instrument from Elementaranalysensysteme GmbH. NMR Spectra were run on a Bruker Avance DPX 200 spectrometer operating at 200 MHz $\left({ }^{1} \mathrm{H}\right)$ and $50 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ at $25{ }^{\circ} \mathrm{C}$ with calibration against the residual protonated solvent signal $\left(\mathrm{CDCl}_{3}: 7.26\left({ }^{1} \mathrm{H}\right)\right.$ and $77.0\left({ }^{13} \mathrm{C}\right)$; $\left[\mathrm{D}_{6}\right]$ DMSO: $2.52\left({ }^{1} \mathrm{H}\right)$ and $\left.39.5\left({ }^{13} \mathrm{C}\right) \mathrm{ppm}\right)$. The NMR grade solvents CDCl_{3} and $\left[\mathrm{D}_{6}\right]$ DMSO were deoxygenated prior to use. EI- and CI-MS: Thermo-Finnigan TSQ 700, with NH_{3} as ionization gas for CI. Polarimetric measurements were carried with a Perkin-Elmer 241 instrument in CHCl_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $20^{\circ} \mathrm{C}$, and the values of $[\alpha]^{20}$ were determined according to the literature [10]. The starting dinuclear $\left[\mathrm{Rh}\left(\mathrm{O}_{2} \mathrm{CMe}\right)\left(\eta^{4} \text {-cod }\right)\right]_{2}$ complex was synthesized from $\left[\mathrm{RhCl}\left(\eta^{4} \text {-cod }\right)\right]_{2}[45]$ according to the literature [22, 46]. The enantiopure amines (R)-1-phenyl-ethylamine, (R)-(2 -methoxyphenyl)ethylamine, (R)-(3 -methoxyphenyl)ethylamine, (R)-(4-methoxyphenyl)ethylamine, (R) -(4-bromophenyl)ethylamine and (R)-(2-naphthyl)ethylamine were used as received from BASF, Ludwigshafen, Germany.

(R)-N-(1-Phenylethyl)salicylaldimine (1)

Salicylaldehyde ($8.35 \mathrm{~mL}, 78.36 \mathrm{mmol}$) was dissolved into 20 mL of methanol with $2-3$ drops of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ added into the solution which was then stirred for 10 min at r.t. An equimolar amount of (R)-1-phenyl-ethylamine $(10 \mathrm{~mL}, 78.39 \mathrm{mmol})$ was added to the solution. The colour soon changed to bright yellow, and the mixture was refluxed for $5-6 \mathrm{~h}$. Then, the solvent was evaporated to a volume of to 50% in vacuo and the yellow solution was left standing at r. t. for crystallization through slow solvent evaporation. After 2-3d, bright-yellow crystals suitable for X-ray measurements were obtained. The crystals were washed three times with $\mathrm{MeOH}\left(5 \mathrm{~mL}\right.$ each) and dried in vacuo at $40-50{ }^{\circ} \mathrm{C}$ for $5-6 \mathrm{~h}$ to give a bright-yellow product. Yield: 16.60 g (94%) (based on salicylaldehyde). $-[\alpha]^{20}\left(c=0.84, \mathrm{CHCl}_{3}\right)$: $-95^{\circ}(578 \mathrm{~nm}) .-\mathrm{IR}(\mathrm{KBr}): v=3063 \mathrm{~m}, 3034 \mathrm{~m}(\mathrm{H}-\mathrm{Ar})$, 1627 vs (C=N), $1578(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$. - ${ }^{1} \mathrm{H}$ NMR (200 MHz , [D D_{6}]DMSO): $\delta=1.59$ (d, $J_{\mathrm{HH}}=6.7 / 6.8^{\mathrm{a}} \mathrm{Hz}, 3 \mathrm{H}, \mathrm{H} 9$), 4.70 $\left(\mathrm{q}, J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 8\right), 6.93\left(\mathrm{dd}, J_{\mathrm{HH}}=7.7,7.2 \mathrm{~Hz}, J_{\mathrm{HH}}=\right.$

$1.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4,6-\mathrm{sal}), 7.31-7.51$ (m, 7H, sal+Ph), 8.70 (s, $1 \mathrm{H}, \mathrm{H} 7$), 13.55 (br, $1 \mathrm{H}, \mathrm{OH}$). - ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.46\left(\mathrm{~d}, J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 9\right), 4.37\left(\mathrm{q}, J_{\mathrm{HH}}=6.7 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H} 8), 6.69$ (ddd, $J_{\mathrm{HH}}=7.7,7.4 \mathrm{~Hz}, J_{\mathrm{HH}}=1.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H} 4), 6.79\left(\mathrm{~d}, J_{\mathrm{HH}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6\right), 7.03-7.22(\mathrm{~m}, 7 \mathrm{H}$, $\mathrm{sal}+\mathrm{Ph}$), 8.22 (s, $1 \mathrm{H}, \mathrm{H} 7$), 13.43 (br, $1 \mathrm{H}, \mathrm{OH}$). - ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.9$ (C9), 68.5 (C8), $117.0(\mathrm{C} 3)$, 118.6 (C5), 118.9 (C1), 126.4 (C11,15), 127.3 (C13), 128.7 (C12,14), 131.4 (C6), 132.3 (C4), 143.9 (C10), 161.1 (C2), 163.5 (C7). - MS (EI, 70 eV): $\mathrm{m} / \mathrm{z}(\%)=225(100)[\mathrm{M}]^{+}$, 121 (65) $\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{CC}_{6} \mathrm{H}_{5}\right]^{+}, 105$ (100) $\left[\mathrm{CH}_{3} \mathrm{CHC}_{6} \mathrm{H}_{5}\right]^{+}, 77$ (10) $\left[\mathrm{C}_{6} \mathrm{H}_{5}\right]^{+} .-\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}$ (225.29): calcd. C 79.97, H 6.71, N 6.22; found C 79.15, H 6.91, N 6.44 .

Compounds 2-6 were prepared following the same procedure as described for $\mathbf{1}$ using (R)-1-(2-methoxyphenyl) ethylamine, (R)-1-(3-methoxyphenyl)ethylamine, (R)-1-(4methoxyphenyl)ethylamine, (R)-1-(4-bromophenyl)ethylamine, and (R)-1-(2-naphthyl)ethylamine, respectively.
(R)-N-(1-(2-Methoxyphenyl)ethyl)salicylaldimine (2)
Yield: $18.0 \mathrm{~g}(90 \%) .-[\alpha]^{20}\left(c=0.49, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right):-163^{\circ}$ $(578 \mathrm{~nm}),-255^{\circ}(546 \mathrm{~nm})$. $-\mathrm{IR}(\mathrm{KBr}): v=3054 \mathrm{~m}(\mathrm{H}-\mathrm{Ar})$, 1626 vs $(\mathrm{C}=\mathrm{N}), 1578$ vs $(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR (200 MHz , CDCl_{3}): $\delta=1.65$ (d, $\left.J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 9\right), 3.91(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{H} 16), 5.05\left(\mathrm{q}, J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 8\right), 6.92\left(\mathrm{ddd}, J_{\mathrm{HH}}=\right.$ $\left.8.4,7.6 \mathrm{~Hz}, J_{\mathrm{HH}}=1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4,13\right), 6.98\left(\mathrm{~d}, J_{\mathrm{HH}}=\right.$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6), 7.05\left(\mathrm{dd}, J_{\mathrm{HH}}=6.5 \mathrm{~Hz}, J_{\mathrm{HH}}=1.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H} 3), 7.29$ (d, $J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 12,14$), 7.37 (ddd, $\left.J_{\mathrm{HH}}=8.0,7.5 \mathrm{~Hz}, J_{\mathrm{HH}}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 7.49\left(\mathrm{dd}, J_{\mathrm{HH}}=\right.$ $\left.7.6 \mathrm{~Hz}, J_{\mathrm{HH}}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 11\right), 8.46\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 13.88$ (br, $1 \mathrm{H}, \mathrm{OH}$). - ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=23.7(\mathrm{C} 9)$, 55.8 (C16), 62.1 (C8), 111.0 (C12), 117.5 (C3), 118.8 (C14), 119.4 (C5), 121.3 (C1), 127.4 (C10), 128.6 (C13), 131.8 (C15), 132.3 (C6), 132.6 (C4), 156.7 (C2), 161.9 (C11), 163.9 (C7). - MS (EI, 70 eV): $m / z(\%)=255(35)[\mathrm{M}]^{+}$, 135 (100) $\left[\mathrm{CH}_{3} \mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right]^{+}, 105(5)\left[\mathrm{CH}_{3} \mathrm{CHC}_{6} \mathrm{H}_{5}\right]^{+}$. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}$ (255.32): calcd. C 75.27, H 6.71, N 5.49 ; found C 75.44, H 6.53, N 5.38 .

(R)-N-(1-(3-Methoxyphenyl)ethyl)salicylaldimine (3)

Yield: $18.2 \mathrm{~g}(91 \%) .-[\alpha]^{20}\left(c=0.42, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right):-169^{\circ}$ $(578 \mathrm{~nm})$. $-\mathrm{IR}(\mathrm{KBr}): v=3053 \mathrm{~m}(\mathrm{H}-\mathrm{Ar}), 1624$ vs $(\mathrm{C}=\mathrm{N})$, 1576 vs (C=C) cm^{-1}. - ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $1.69\left(\mathrm{~d}, J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 9\right), 3.87(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 16), 4.58(\mathrm{q}$, $\left.J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 8\right), 6.89\left(\mathrm{ddd}, J_{\mathrm{HH}}=7.2,6.8 \mathrm{~Hz}, J_{\mathrm{HH}}=\right.$ $1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4,12), 6.95\left(\mathrm{~d}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 6,13\right)$,
$7.03\left(\mathrm{dd}, J_{\mathrm{HH}}=6.2 \mathrm{~Hz}, J_{\mathrm{HH}}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3\right), 7.31(\mathrm{dd}$, $\left.J_{\mathrm{HH}}=7.8 \mathrm{~Hz}, J_{\mathrm{HH}}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 11\right), 7.39\left(\mathrm{ddd}, J_{\mathrm{HH}}=\right.$ $\left.6.8,6.5 \mathrm{~Hz}, J_{\mathrm{HH}}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 8.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 7), 13.55$ (br, $1 \mathrm{H}, \mathrm{OH}$). - ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.3$ (C9), 55.6 (C16), 68.8 (C8), 112.7 (C13), 112.9 (C11), 117.4 (C3), 119.0 (C15), 119.2 (C5), 119.3 (C1), 130.1 (C14), 131.8 (C6), 132.7 (C4), 145.9 (C10), 160.3 (C2), 161.5 (C12), 163.9 (C7). - $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}$ (255.32): calcd. C 75.27, H 6.71, N 5.49; found C 74.89, H 6.47, N 5.36.
(R)-N-(1-(4-Methoxyphenyl)ethyl)salicylaldimine (4)

Yield: $18.6 \mathrm{~g}(93 \%) .-[\alpha]^{20}\left(c=0.53, \mathrm{CHCl}_{3}\right):-170^{\circ}$ $(578 \mathrm{~nm}) .-\mathrm{IR}(\mathrm{KBr}): v=3054 \mathrm{~m}(\mathrm{H}-\mathrm{Ar}), 1626$ vs $(\mathrm{C}=\mathrm{N})$, 1609,1578 vs (C=C) $\mathrm{cm}^{-1} .-{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.66\left(\mathrm{~d}, J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 9\right), 3.85(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 16), 4.57$ (q, $\left.J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 8\right), 6.87-7.01(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 3-6), 7.26-$ 7.39 (m, 4H, H11,12,14,15), 8.43 (s, 1H, H7), 13.58 (br, $1 \mathrm{H}, \mathrm{OH}) .-{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=1.56$ (d, $\left.J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 9\right), 3.77(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 16), 4.65\left(\mathrm{q}, J_{\mathrm{HH}}=\right.$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 8), 6.88-6.99$ (m, 4H, H3-6), $7.33-7.47$ (m, $4 \mathrm{H}, \mathrm{H} 11,12,14,15), 8.66$ (s, 1H, H7), 13.53 (br, 1H, OH). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=24.5$ (C9), 55.5 (C16), 66.6 (C8), 114.4 (C12,14), 116.8 (C3), 118.9 (C5), 119.1 (C1), 127.8 (C11,15), 132.0 (C6), 132.6 (C4), 136.3 (C10), 158.8 (C2), 160.9 (C13), 164.3 (C7). - MS (EI, 70 eV): m/z $(\%)=255(85)[\mathrm{M}]^{+}, 135(100)\left[\mathrm{CH}_{3} \mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right]^{+}, 121$ (20) $\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right]^{+}$, 105 (10) $\left[\mathrm{CH}_{3} \mathrm{CHC}_{6} \mathrm{H}_{5}\right]^{+}$. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}$ (255.32): calcd. C $75.27, \mathrm{H} 6.71, \mathrm{~N} 5.49$; found C 75.01, H 6.71, N 5.31.

(R)-N-(1-(4-Bromophenyl)ethyl)salicylaldimine (5)

Yield: $22.0 \mathrm{~g}(92 \%) .-[\alpha]^{20}\left(c=0.61, \mathrm{CHCl}_{3}\right):-148^{\circ}$ $(578 \mathrm{~nm})$. $-\mathrm{IR}(\mathrm{KBr}): v=3049 \mathrm{~m}(\mathrm{H}-\mathrm{Ar}), 1616$ vs $(\mathrm{C}=\mathrm{N})$, 1575 vs (C=C) cm ${ }^{-1}$. - ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $1.52\left(\mathrm{~d}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 9\right), 4.43\left(\mathrm{q}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H8), $6.80\left(\right.$ ddd, $\left.J_{\mathrm{HH}}=7.4,6.4 \mathrm{~Hz}, J_{\mathrm{HH}}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4\right)$, $6.89\left(\mathrm{~d}, J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6\right), 7.16\left(\mathrm{dd}, J_{\mathrm{HH}}=6.2 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 3,11,15\right), 7.24\left(\mathrm{ddd}, J_{\mathrm{HH}}=6.8,7.0 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 7.40\left(\mathrm{dd}, J_{\mathrm{HH}}=4.8 \mathrm{~Hz}, J_{\mathrm{HH}}=\right.$ $1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 12,14), 8.32$ (s, 1H, H7), 13.22 (br, $1 \mathrm{H}, \mathrm{OH}$). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=1.56$ (d, $J_{\mathrm{HH}}=6.7 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{H} 9), 4.69\left(\mathrm{q}, J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 8\right), 6.93\left(\mathrm{ddd}, J_{\mathrm{HH}}=\right.$ $\left.7.8,6.6 \mathrm{~Hz}, J_{\mathrm{HH}}=1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4,6\right), 7.38\left(\mathrm{ddd}, J_{\mathrm{HH}}=\right.$ $\left.7.7,6.4 \mathrm{~Hz}, J_{\mathrm{HH}}=1.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 3,11,15\right), 7.48\left(\mathrm{dd}, J_{\mathrm{HH}}=\right.$ $\left.6.4 \mathrm{~Hz}, J_{\mathrm{HH}}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 7.57\left(\mathrm{dd}, J_{\mathrm{HH}}=6.7 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{HH}}=1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 12,14\right), 8.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 7), 13.28(\mathrm{br}, 1 \mathrm{H}$, $\mathrm{OH}) .-{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=24.5$ (C9), 66.6 (C8), 116.8 (C3), 119.1 (C13), 120.5 (C5), 128.9 (C11,15), 129.4 (C1), 131.8 (C12,14), 132.1 (C6), 132.8 (C4), 143.8 (C10), 160.7 (C2), 165.0 (C7). - MS (EI, 70 eV$): \mathrm{m} / \mathrm{z}(\%)=$ 304 (84) $[\mathrm{M}]^{+}$, $183(5)\left[\mathrm{CH}_{3} \mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{Br}\right]^{+}\left({ }^{79 / 81} \mathrm{Br}\right.$ isotopic pattern clearly visible for patterns following the 304 and

183 peaks, with masses given for the slightly more abundant ${ }^{79} \mathrm{Br}$-containing fragment), 121 (100) $\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Br}\right]^{+}$, 104 (55) $\left[\mathrm{CH}_{3} \mathrm{CHC}_{6} \mathrm{H}_{4}\right]^{+}, 77$ (10) $\left[\mathrm{C}_{6} \mathrm{H}_{5}\right]^{+} .-\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NOBr}$ (304.19): calcd. C 59.23, H $4.64, \mathrm{~N} 4.60$; found C 59.36 , H 4.61, N 4.55 .

(R)-N-(1-(2-Naphthyl)ethyl)salicylaldimine (6)

Yield: $20.0 \mathrm{~g}(93 \%) .-[\alpha]^{20}\left(c=0.52, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right):-154^{\circ}$ $(578 \mathrm{~nm}),-173^{\circ}(546 \mathrm{~nm})$. $-\mathrm{IR}(\mathrm{KBr}): v=3048 \mathrm{~s}(\mathrm{H}-\mathrm{Ar})$, 1628 vs ($\mathrm{C}=\mathrm{N}$), $1602 \mathrm{~s}, 1573$ vs ($\mathrm{C}=\mathrm{C}$) cm^{-1}. - ${ }^{1} \mathrm{H}$ NMR ($\left.200 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): \delta=1.69$ (d, $J_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{H} 9), 4.88\left(\mathrm{q}, J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 8\right), 6.94\left(\mathrm{ddd}, J_{\mathrm{HH}}=7.7\right.$, $\left.8.2 \mathrm{~Hz}, J_{\mathrm{HH}}=1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4,6\right), 7.36\left(\mathrm{ddd}, J_{\mathrm{HH}}=7.6\right.$, $\left.8.4 \mathrm{~Hz}, J_{\mathrm{HH}}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 7.52$ (m, 3H, H3+nap), 7.60 $\left(\mathrm{dd}, J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, J_{\mathrm{HH}}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, nap $), 7.91-7.97(\mathrm{~m}$, 4 H , nap), 8.76 (s, 1H, H7), 13.55 (br, 1H, OH). - ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=24.5$ (C9), 67.3 (C8), 116.8 (C3), 119.1 (C5), 119.2 (C1), 125.0 (C15), 125.3 (C16), 126.2 (C19), 126.6 (C12), 127.9 (C17), 128.2 (C14), 128.7 (C11), 132.2 (C6), 132.7 (C13), 132.8 (C4), 133.4 (C18), 141.9 (C10), 160.9 (C2), 164.9 (C7). - MS (EI, 70 eV): m/z $(\%)=275(80)[\mathrm{M}]^{+}, 155(100)\left[\mathrm{CH}_{3} \mathrm{CHC}_{10} \mathrm{H}_{7}\right]^{+}, 121$ (20) $\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{CC}_{10} \mathrm{H}_{7}\right]^{+} .-\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}$ (275.35): calcd. C 82.88, H 6.22, N 5.09; found C 82.54, H 6.10, N 4.96.

Cyclooctadiene- $\{(R)-N-(1-p h e n y l e t h y l)$ salicylaldiminato$\left.\kappa^{2} N, O\right\}-$-rhodium (I) (7)

Two equivalents of (R)- N-(1-phenylethyl)salicylaldimine ($80.4 \mathrm{mg}, 0.36 \mathrm{mmol}$) and one equivalent of $\left[\mathrm{Rh}\left(\mathrm{O}_{2} \mathrm{CMe}\right)\right.$ $\left(\eta^{4} \text {-cod) }\right]_{2}(96.3 \mathrm{mg}, 0.18 \mathrm{mmol})$ were dissolved in 10 mL of toluene $/ \mathrm{MeOH}(5: 1, \mathrm{v} / \mathrm{v})$ and the solution stirred for $5-6 \mathrm{~h}$ at r.t. The colour soon changed from red-orange to brightyellow. Then the solvent was evaporated in vacuo at $50^{\circ} \mathrm{C}$. The product was again dissolved in 10 mL of toluene $/ \mathrm{MeOH}$ ($5: 1, \mathrm{v} / \mathrm{v}$), the solution stirred for 30 min and the solvent evaporated in vacuo. This procedure was repeated three times, and finally the yellow the product was dried in vacuo ($0.1-0.2 \mathrm{mbar}$) at $60^{\circ} \mathrm{C}$. Single crystals suitable for X-ray measurements were grown by slow diffusion of diethyl ether into a chloroform solution of complex $\mathbf{7}$ after one week at r . t. Yield: $0.130 \mathrm{~g}(81 \%)$, based on $\left[\mathrm{Rh}\left(\mathrm{O}_{2} \mathrm{CMe}\right)\left(\eta^{4}-\operatorname{cod}\right)\right]_{2}$. UV/vis (7.109• $10^{-5} \mathrm{~mol} \mathrm{~mL}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$): $\lambda_{\text {max }}\left(\lg \varepsilon_{\max }\right)=$ $392 \mathrm{~nm}(3.84), 234 \mathrm{~nm}(4.57) .-[\alpha]^{20}\left(c=0.26, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $+250^{\circ}(578 \mathrm{~nm}),+308^{\circ}(546 \mathrm{~nm}) .-[\alpha]^{20}\left(c=0.44, \mathrm{CHCl}_{3}\right)$: $+182^{\circ}(578 \mathrm{~nm}) .-\operatorname{IR}(\mathrm{KBr}): v=3060,3030 \mathrm{w}(\mathrm{H}-\mathrm{Ar})$, 1626 sh (C=N), 1579 vs (C=C) cm ${ }^{-1}$. - ${ }^{1} \mathrm{H}$ NMR (200 MHz ,
[D D_{6}]DMSO): $\delta=1.63$ (d, $J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 9$), 1.87 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \operatorname{cod}_{\text {exo }}$), $2.40\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \operatorname{cod}_{\text {endo }}\right), 3.77(\mathrm{~m}, 2 \mathrm{H}$, CHcod), $4.41\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{8}+\mathrm{CHcod}\right), 6.48\left(\mathrm{t}, J_{\mathrm{HH}}=7.4 / 6.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H} 4), 6.64\left(\mathrm{~d}, J_{\mathrm{HH}}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6\right), 7.23\left(\mathrm{~d}, J_{\mathrm{HH}}=\right.$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3,5$), $7.28-7.39$ (m, 5H, H11-15), 8.13 (s, 1H, H7). - ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.58$ (d, $J_{\mathrm{HH}}=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 9), 1.85\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \operatorname{cod}_{\mathrm{exo}}\right), 2.43(\mathrm{~m}, 4 \mathrm{H}$, CH_{2} cod $_{\text {endo }}$), 3.72 (m, 2H, CHcod), 4.37 (q, $J_{\mathrm{HH}}=6.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H} 8), 4.54(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHcod}), 6.41$ (ddd, $J_{\mathrm{HH}}=6.8 \mathrm{~Hz}$, $\left.J_{\mathrm{HH}}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4\right), 6.77\left(\mathrm{~d}, J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6\right), 6.89$ $\left(\mathrm{dd}, J_{\mathrm{HH}}=6.0 \mathrm{~Hz}, J_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3\right), 7.15-7.29(\mathrm{~m}$, $6 \mathrm{H}, \mathrm{H} 5,11,12,13,14,15), 7.82$ (d, $J_{\mathrm{HH}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 7$). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=22.5(\mathrm{C} 9), 29.2,29.6$, $32.0,32.5\left(\mathrm{CH}_{2} \mathrm{cod}\right), 60.2(\mathrm{C} 8), 71.4\left(\mathrm{~d}, J_{\mathrm{CRh}}=14.6 \mathrm{~Hz}\right.$, CHcod), 73.5 (d, $\left.J_{\text {CRh }}=14.2 \mathrm{~Hz}, \mathrm{CHcod}\right), 85.3\left(\mathrm{~d}, J_{\mathrm{CRh}}=\right.$ $12.3 \mathrm{~Hz}, \mathrm{CHcod}), 85.7$ (d, $J_{\mathrm{CRh}}=12.1 \mathrm{~Hz}$, CHcod), 114.6 (C3), 119.7 (C5), 121.8 (C1), 127.7 (C13), 128.0 (C11,15), 129.0 (C12,14), 135.0 (C6), 135.5 (C4), 143.2 (C10), 165.4 (C2), 166.1 (C7). - MS (EI, 70 eV): $m / z(\%)=435$ (86) $[\mathrm{M}]^{+}, 327$ (100) $[\mathrm{M}-\mathrm{cod}]^{+}, 225$ (16) $\left[\mathrm{HSB}^{*}\right]^{+}, 224$ (12) [SB] ${ }^{+}, 208$ (49) $\left[\mathrm{HSB}^{*}-\mathrm{OH}\right]^{+}, 206$ (35) $\left[\mathrm{SB}^{*}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 105$ (30) $\left[\mathrm{CH}_{3} \mathrm{CHC}_{6} \mathrm{H}_{5}\right]^{+}$, 103 (15) $[\mathrm{Rh}]^{+}, 77$ (7) $\left[\mathrm{C}_{6} \mathrm{H}_{5}\right]^{+}$. MS (CI, NH_{3}): m/z $(\%)=436$ (100) $[\mathrm{M}+\mathrm{H}]^{+}, 327(10)$ $[\mathrm{M}-\mathrm{cod}]^{+}, 226$ (85) $\left[\mathrm{HSB}^{*}+\mathrm{H}\right]^{+}, 225$ (10) $\left[\mathrm{HSB}^{*}\right]^{+}$. $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NORh}$ (435.37): calcd. C 63.45, H 6.02, N 3.22; found C 63.53, H 6.13, N 3.24 .

The same procedure was followed for the synthesis of the complexes $\mathbf{8 - 1 1}$ using the Schiff bases 2-6, respectively.

Cyclooctadiene- $\{(R)-N-(1-(2-m e t h o x y p h e n y l)$ ethyl $)$ salicyl-aldiminato- $\left.\kappa^{2} N, O\right\}$-rhodium (I) (8)

Yield: $0.135 \mathrm{~g}(78 \%)$. - UV/vis $\left(8.526 \cdot 10^{-5} \mathrm{~mol}\right.$ $\left.\mathrm{mL}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }\left(\lg \varepsilon_{\max }\right)=388 \mathrm{~nm}(3.80), 236 \mathrm{~nm}$ (4.53). $-[\alpha]^{20}\left(c=0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right):+200^{\circ}(578 \mathrm{~nm}),+220^{\circ}$ $(546 \mathrm{~nm}) .-\mathrm{IR}(\mathrm{KBr}): v=3044 \mathrm{w}(\mathrm{H}-\mathrm{Ar}), 1626 \mathrm{~s}(\mathrm{C}=\mathrm{N})$, 1573 vs ($\mathrm{C}=\mathrm{C}$) cm^{-1}. - ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $1.54\left(\mathrm{~d}, J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 9\right), 1.84\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \operatorname{cod}_{\mathrm{exo}}\right)$, 2.43 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2}$ cod $_{\text {endo }}$), 3.73 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHcod}$), 3.78 (s , $\left.3 \mathrm{H}, \mathrm{H}_{16}\right), 4.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHcod}), 4.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHcod})$, $4.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHcod}), 4.63\left(\mathrm{q}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 8\right)$, $6.38\left(\mathrm{ddd}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, J_{\mathrm{HH}}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4\right), 6.76$ $\left(\mathrm{t}, J_{\mathrm{HH}}=9.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3,6\right), 6.85\left(\mathrm{dd}, J_{\mathrm{HH}}=6.2 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{HH}}=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 6.93\left(\mathrm{~d}, J_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 11\right)$, $7.15\left(\mathrm{ddd}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, J_{\mathrm{HH}}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 13\right), 7.17-$ $7.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 12,14), 7.73\left(\mathrm{~d}, J_{\mathrm{HH}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 7\right)$. ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=22.8$ (C9), 28.9, 30.1, 31.7, $33.1\left(\mathrm{CH}_{2} \operatorname{cod}\right), 55.9\left(\mathrm{C}_{16}\right), 56.9\left(\mathrm{C}_{8}\right), 71.6\left(\mathrm{~d}, J_{\mathrm{CRh}}=\right.$ $14.5 \mathrm{~Hz}, \mathrm{CHcod}), 74.7$ (d, $J_{\mathrm{CRh}}=13.4 \mathrm{~Hz}$, CHcod), 84.0 (d, $\left.J_{C R h}=12.0 \mathrm{~Hz}, \mathrm{CHcod}\right), 85.0\left(\mathrm{~d}, J_{\mathrm{CRh}}=12.6 \mathrm{~Hz}, \mathrm{CHcod}\right)$, 111.4 (C12), 114.3 (C3), 119.8 (C14), 120.6 (C5), 121.7 (C1), 128.4 (C10), 129.6 (C13), 130.2 (C15), 134.6 (C6), 135.5 (C4), 157.1 (C2), 162.5 (C11), 165.9 (C7). - MS (EI,
$70 \mathrm{eV}): m / z(\%)=465(100)[\mathrm{M}]^{+}, 357(95)[\mathrm{M}-\mathrm{cod}]^{+}$, 327 (12) $[\mathrm{M}-\mathrm{cod}-\mathrm{HCHO}]^{+}, 255$ (5) $\left[\mathrm{HSB}^{*}\right]^{+}, 234$ (12) $\left[\mathrm{SB}-\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2}\right]^{+}, 135(12)\left[\mathrm{CH}_{3} \mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right]^{+}, 103$ (5) $[R h]^{+} .-\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{Rh}(465.40)$: calcd. C 61.94, H 6.06, N 3.01; found C 62.85, H 6.12, N 2.45 .

Cyclooctadiene- $\{(R)-N-(1-(4-m e t h o x y p h e n y l) e t h y l)$ salicyl-aldiminato- $\left.\kappa^{2} N, O\right\}$-rhodium (I) (9)

Yield: $0.130 \mathrm{~g}(75 \%)$. - UV/vis ($1.398 \cdot 10^{-4} \mathrm{~mol}$ $\left.\mathrm{mL}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }\left(\lg \varepsilon_{\max }\right)=392 \mathrm{~nm}(3.70), 240 \mathrm{~nm}$ (4.38). $-[\alpha]^{20}\left(c=0.41, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right):+207^{\circ}(578 \mathrm{~nm}),+280^{\circ}$ $(546 \mathrm{~nm}) .-[\alpha]^{20}\left(c=0.56, \mathrm{CHCl}_{3}\right):+241^{\circ}(578 \mathrm{~nm}) .-\mathrm{IR}$ (KBr): $v=3062,3030 \mathrm{w}(\mathrm{H}-\mathrm{Ar}), 1624 \mathrm{~s}(\mathrm{C}=\mathrm{N}), 1577 \mathrm{vs}$ (C=C) cm^{-1}. - ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=$ $1.59\left(\mathrm{~d}, J_{\mathrm{HH}}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 9\right), 1.88\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \operatorname{cod}_{\mathrm{exo}}\right)$, 2.42 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{cod}_{\text {endo }}$), 3.74 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H} 16$), 3.76 (m, $2 \mathrm{H}, \mathrm{CHcod}), 4.34\left(\mathrm{q}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 8\right), 4.43(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CHcod}), 6.47\left(\mathrm{t}, J_{\mathrm{HH}}=7.4 / 6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4\right), 6.63(\mathrm{~d}$, $\left.J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6\right), 6.94\left(\mathrm{~d}, J_{\mathrm{HH}}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3,5\right)$, 7.25 (m, 4H, H11,12,14,15), 8.04 (s, 1H, H7). - ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.55\left(\mathrm{~d}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 9\right)$, 1.88 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{cod}_{\text {exo }}$), $2.42\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{cod}_{\text {endo }}\right.$), 3.70 (m, 2H, CHcod), 3.73 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H} 16$), 4.53 (m, 2H, CHcod), $4.32\left(\mathrm{q}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 8\right), 6.40\left(\mathrm{ddd}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{HH}}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4\right), 6.81(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 3,6), 6.89$ (ddd, $\left.J_{\mathrm{HH}}=6.1 \mathrm{~Hz}, J_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 7.15-7.22(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{H} 11,12,14,15), 7.78\left(\mathrm{~d}, J_{\mathrm{HH}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 7\right)$. ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=22.7$ (C9), 29.1, 29.6, $32.0,32.5\left(\mathrm{CH}_{2} \mathrm{cod}\right), 55.7(\mathrm{C} 16), 59.7(\mathrm{C} 8), 71.2\left(\mathrm{~d}, J_{\mathrm{CRh}}=\right.$ $14.3 \mathrm{~Hz}, \mathrm{CHcod}), 73.6$ (d, $\left.J_{\text {CRh }}=14.0 \mathrm{~Hz}, \mathrm{CHcod}\right), 85.3$ (d, $\left.J_{\text {CRh }}=12.2 \mathrm{~Hz}, \mathrm{CHcod}\right), 85.7$ (d, $\left.J_{\text {CRh }}=12.2 \mathrm{~Hz}, \mathrm{CHcod}\right)$, 114.4 (C12,14), 114.6 (C3), 119.7 (C5), 121.8 (C1), 129.2 (C11,15), 134.9 (C6), 135.2 (C4), 135.5 (C10), 159.2 (C2), 165.2 (C13), 166.0 (C7). - MS (EI, 70 eV): m/z (\%) = 465 (70) $[\mathrm{M}]^{+}, 357$ (100) $[\mathrm{M}-\mathrm{cod}]^{+}, 327$ (13) $[\mathrm{M}-\mathrm{cod}-$ $\mathrm{HCHO}]^{+}, 255$ (21) $\left[\mathrm{HSB}^{*}\right]^{+}, 238$ (41) $\left[\mathrm{HSB}^{*}-\mathrm{OH}\right]^{+}, 135$ (100) $\left[\mathrm{CH}_{3} \mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right]^{+}$, 105 (23) $\left[\mathrm{CH}_{3} \mathrm{CHC}_{6} \mathrm{H}_{5}\right]^{+}, 103$ (15) $[\mathrm{Rh}]^{+}, 77(10)\left[\mathrm{C}_{6} \mathrm{H}_{5}\right]^{+}$. - MS (CI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}(\%)=$ 466 (85) $[M+\mathrm{H}]^{+}, 256$ (100) $\left[\mathrm{HSB}^{*}+\mathrm{H}\right]^{+}, 135$ (20) $\left[\mathrm{CH}_{3} \mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right]^{+}$. - $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{Rh}$ (465.40): calcd. C 61.94, H 6.06, N 3.01 ; found C 61.51, H $6.07, \mathrm{~N} 2.89$.

Cyclooctadiene- $\{(R)-N-(1-(4-b r o m o p h e n y l) e t h y l)$ salicylald-iminato- $\left.\kappa^{2} N, O\right\}$-rhodium (I) (10)

Yield: $0.150 \mathrm{~g}(79 \%)$. $\mathrm{UV} / \mathrm{vis}\left(7.408 \cdot 10^{-5} \mathrm{~mol} \mathrm{~mL}^{-1}\right.$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }\left(\lg \varepsilon_{\max }\right)=394 \mathrm{~nm}(4.09), 244 \mathrm{~nm}(4.66)$. $[\alpha]^{20}\left(c=0.24, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right):+333^{\circ}(578 \mathrm{~nm}), 479^{\circ}(546 \mathrm{~nm})$. $[\alpha]^{20}\left(c=0.47, \mathrm{CHCl}_{3}\right):+308^{\circ}(578 \mathrm{~nm}) .-\mathrm{IR}(\mathrm{KBr}): v=$ 3045 w ($\mathrm{H}-\mathrm{Ar}$), 1620 sh ($\mathrm{C}=\mathrm{N}$), 1604 vs $(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=1.62$ (d, $J_{\mathrm{HH}}=$ $6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 9$), 1.88 (m, 4H, CH2 $\mathrm{cod}_{\mathrm{exo}}$), $2.40(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \operatorname{cod}_{\text {endo }}$), $3.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHcod}), 4.37\left(\mathrm{q}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$,

Table 2. Crystal structure data for $\mathbf{4}, \mathbf{5}$ and 7 .

	4	5	7
Formula	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}$	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrNO}$	$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NORh}$
$M_{\text {r }}$	255.31	304.18	435.36
Cryst. size $\left[\mathrm{mm}^{3}\right]$	$0.42 \times 0.13 \times 0.12$	$0.45 \times 0.21 \times 0.03$	$0.39 \times 0.26 \times 0.12$
Crystal system	orthorhombic	orthorhombic	monoclinic
Space group	$P 2{ }_{2} 1_{1}{ }_{1}$	$P 2{ }_{1} 1_{1} 2_{1}$	$P 2{ }_{1}$
$a[\AA]$	5.724(2)	5.8401(7)	12.9992(16)
$b[\AA]$	12.633(5)	7.6145(10)	10.2131(13)
$c[\AA]$	19.237(7)	31.146(4)	14.6849(18)
β [deg]	90	90	102.961(2)
$V\left[\AA^{3}\right]$	1391.1(9)	1385.0(3)	1899.9(4)
Z	4	4	4
$D_{\text {calcd }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.219	1.459	1.522
$\mu\left(\mathrm{Mo} K_{\alpha}\right)\left[\mathrm{cm}^{-1}\right]$	0.80	29.55	9.10
$F(000)$ [e]	544	616	896
$h k l$ range	$\pm 7 ; \pm 16 ; \pm 25$	$\pm 7 ;-9,10 ;-42,41$	$\pm 17 ; \pm 13 ; \pm 19$
$((\sin \theta) / \lambda)_{\max }\left[\AA^{-1}\right]$	0.675	0.677	0.680
Refl. measured	12144	12448	17341
Refl. unique	1979	3358	8750
$R_{\text {int }}$	0.0504	0.0449	0.0182
Param. refined	176	167	469
$R(F) / w R\left(\mathrm{~F}^{2}\right)^{\text {a }}$ (all reflexions)	0.0827/0.1116	0.0587/0.0607	0.0295/0.0465
x (Flack)	b	0.017(9)	-0.006(16)
$\mathrm{GoF}\left(F^{2}\right)^{\mathrm{a}}$	1.037	0.844	0.936
$\Delta \rho_{\text {fin }}(\mathrm{max} / \mathrm{min})\left[\mathrm{e} \AA^{-3}\right]$	0.164/-0.197	0.393/-0.352	0.388/-0.381

${ }^{\text {a }} R(F)=\left[\Sigma\left(\left\|F_{\mathrm{o}}|-| F_{\mathrm{c}}\right\|\right) / \Sigma\left|F_{\mathrm{o}}\right|\right] ; w R\left(F^{2}\right)=\left[\Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{0}{ }^{2}\right)^{2}\right]\right]^{1 / 2}$. - Goodness-of-fit $=\left[\Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] /(n-p)\right]^{1 / 2}$. - Weighting scheme $w ; a / b=0.0601 / 0.0000$ for $\mathbf{4}, 0.0273 / 0.0000$ for 5 and $0.0201 / 0.0000$ for 7 with $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(a P)^{2}+b P\right]$ where $P=\left(\max \left(F_{0}{ }^{2}\right.\right.$ or $\left.0)+2 F_{\mathrm{c}}^{2}\right) / 3 .-{ }^{\mathrm{b}}$ Anomalous scattering power is too small in combination with the data quality at hand to give a meaningful Flack parameter; Friedel opposites were therefore merged (MERG 4). The absolute configuration was established by the known absolute configuration of the starting amine.
$1 \mathrm{H}, \mathrm{H} 8), 4.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHcod}), 6.49\left(\mathrm{t}, J_{\mathrm{HH}}=7.6 / 7.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H} 4), 6.65\left(\mathrm{~d}, J_{\mathrm{HH}}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6\right), 7.28(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{H} 3,5,11,15), 7.58\left(\mathrm{~d}, J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 12,14\right), 8.12(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H} 7$). $-{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.56$ (d, $J_{\mathrm{HH}}=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 9), 1.88$ (m, 4H, CH2 $\operatorname{cod}_{\mathrm{exo}}$), $2.42(\mathrm{~m}, 4 \mathrm{H}$, CH_{2} cod $_{\text {endo }}$), $3.66(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHcod}), 4.29\left(\mathrm{q}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H} 8), 4.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHcod}), 6.42$ (ddd, $J_{\mathrm{HH}}=6.8 \mathrm{~Hz}$, $\left.J_{\mathrm{HH}}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4\right), 6.77\left(\mathrm{~d}, J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6\right)$, $6.90\left(\mathrm{dd}, J_{\mathrm{HH}}=6.2 \mathrm{~Hz}, J_{\mathrm{HH}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3\right), 7.14(\mathrm{~d}$, $\left.J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 11,15\right), 7.20\left(\mathrm{ddd}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, J_{\mathrm{HH}}=\right.$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5), 7.41\left(\mathrm{dd}, J_{\mathrm{HH}}=5.8 \mathrm{~Hz}, J_{\mathrm{HH}}=1.8 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{H} 12,14), 7.75$ (d, $J_{\mathrm{HH}}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 7$). ${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.1$ (C9), 27.9, 28.2, 30.7, 31.1 $\left(\mathrm{CH}_{2} \mathrm{cod}\right), 58.3(\mathrm{C} 8), 70.2\left(\mathrm{~d}, J_{\mathrm{CRh}}=14.1 \mathrm{~Hz}, \mathrm{CH} c o d\right)$, 72.0 (d, $\left.J_{\mathrm{CRh}}=14.6 \mathrm{~Hz}, \mathrm{CHcod}\right), 84.2\left(\mathrm{~d}, J_{\mathrm{CRh}}=12.2 \mathrm{~Hz}\right.$, CHcod), 84.5 (d, $\left.J_{\text {CRh }}=11.8 \mathrm{~Hz}, \mathrm{CHcod}\right), 113.4$ (C3), 118.2 (C13), 120.5 (C5), 128.1 (C1), 128.3 (C11,15), 130.8 (C12,14), 133.9 (C6), 134.2 (C4), 141.1 (C10), 164.1 (C2), 164.9 (C7). - MS (EI, 70 eV): $m / z(\%)=513$ (81) [M] ${ }^{+}$, 405 (96) [M-cod] ${ }^{+}, 332(40)\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{Br}+\mathrm{H}_{2}\right]^{+}$, 303 (6) [$\left.\mathrm{HSB}^{*}\right]^{+}, 223$ (14) [SB*-Br], 211 (15) [Rhcod] ${ }^{+}$, 184 (25) $\left[\mathrm{CH}_{3} \mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{Br}+\mathrm{H}\right]^{+}$, 104 (8) $\left[\mathrm{CH}_{3} \mathrm{CHC}_{6} \mathrm{H}_{4}\right]^{+}$, $103(5)[\mathrm{Rh}]^{+}$(${ }^{79 / 81} \mathrm{Br}$ isotopic pattern clearly visible for patterns following the 513,405 , and 184 peaks, with masses
given for the slightly more abundant ${ }^{79} \mathrm{Br}$-containing fragment). - $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{BrNORh}$ (514.27): calcd. C 53.72, H 4.90, N 2.72; found C 53.21, H 5.00, N 2.51 .

Cyclooctadiene- $\{(R)-N-(1-(2-n a p h t h y l) e t h y l) s a l i c y l a l d i m i n-~$ ato- $\left.\kappa^{2} N, O\right\}$-rhodium (I) (11)

Yield: $0.145 \mathrm{~g}(81 \%)$. - UV/vis $\left(5.722 \cdot 10^{-5} \mathrm{~mol}\right.$ $\left.\mathrm{mL}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }\left(\lg \varepsilon_{\max }\right)=392 \mathrm{~nm}(4.17), 244 \mathrm{~nm}$ (4.78). $-[\alpha]^{20}\left(c=0.35, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right):+329^{\circ}(578 \mathrm{~nm}),+429^{\circ}$ $(546 \mathrm{~nm})$. - IR (KBr): $v=3053 \mathrm{w}, 3040 \mathrm{w}(\mathrm{H}-\mathrm{Ar}), 1622 \mathrm{vs}$ $(\mathrm{C}=\mathrm{N}), 1577$ vs ($\mathrm{C}=\mathrm{C}$) cm^{-1}. - ${ }^{1} \mathrm{H}$ NMR (200 MHz , CDCl_{3}): $\delta=1.68\left(\mathrm{~d}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 9\right), 1.89(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{CH}_{2} \operatorname{cod}_{\text {exo }}$), $2.44\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \operatorname{cod}_{\text {endo }}\right.$), 3.77 ($\mathrm{m}, 2 \mathrm{H}$, CHcod), $4.50\left(\mathrm{q}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 8\right), 4.57(\mathrm{~m}, 2 \mathrm{H}$, CHcod), 6.35 (ddd, $J_{\mathrm{HH}}=6.5,6.1 \mathrm{~Hz}, J_{\mathrm{HH}}=1.0 \mathrm{~Hz}, 1 \mathrm{H}$, H4), $6.79\left(\mathrm{ddd}, J_{\mathrm{HH}}=7.8,7.1 \mathrm{~Hz}, J_{\mathrm{HH}}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3,6\right)$, $7.16\left(\mathrm{ddd}, J_{\mathrm{HH}}=6.9,6.7 \mathrm{~Hz}, J_{\mathrm{HH}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 7.38$ (ddd, $J_{\mathrm{HH}}=8.9,7.9 \mathrm{~Hz}, J_{\mathrm{HH}}=1.3 \mathrm{~Hz}, 2 \mathrm{H}$, nap), $7.42(\mathrm{~d}$, $\left.J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{nap}\right), 7.72(\mathrm{~m}, 4 \mathrm{H}, \mathrm{nap}), 7.82\left(\mathrm{~d}, J_{\mathrm{HH}}=\right.$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 7$). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=22.6$ (C9), 29.2, 29.6, 32.1, $32.6\left(\mathrm{CH}_{2} \mathrm{cod}\right), 60.4$ (C8), 71.4 (d, $\left.J_{\mathrm{CRh}}=14.2 \mathrm{~Hz}, \mathrm{CHcod}\right), 73.7$ (d, $\left.J_{\mathrm{CRh}}=14.3 \mathrm{~Hz}, \mathrm{CHcod}\right)$, 85.4 (d, $\left.J_{\mathrm{CRh}}=12.3 \mathrm{~Hz}, \mathrm{CHcod}\right), 85.8\left(\mathrm{~d}, J_{\mathrm{CRh}}=11.6 \mathrm{~Hz}\right.$,

CHcod), 114.7 (C3), 119.7 (C5), 121.8 (C1), 126.1 (C15), 126.6 (C16), 126.7 (C19), 126.8 (C12), 128.0 (C17), 128.5 (C14), 129.0 (C11), 133.0 (C6), 133.5 (C13), 135.1 (C4), 135.6 (C18), 140.7 (C10), 165.6 (C2), 166.1 (C7). - MS (EI, 70 eV$): m / z(\%)=485$ (64) $[\mathrm{M}]^{+}, 377$ (100) $[\mathrm{M}-$ cod $]^{+}, 275$ (5) $\left[\mathrm{HSB}^{*}\right]^{+}, 258$ (13) $\left[\mathrm{HSB}^{*}-\mathrm{OH}\right]^{+}, 155$ (7) $\left[\mathrm{CH}_{3} \mathrm{CHC}_{10} \mathrm{H}_{7}\right]^{+} .-\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NORh}$ (485.43): calcd. C 66.81, H 5.81, N 2.89; found C 66.71, H 6.45, N 2.38 .

X-Ray structure determinations

Data Collection: Bruker AXS with CCD area detector, temperature $203(2) \mathrm{K}, \operatorname{Mo} K_{\alpha}$ radiation $(\lambda=0.71073 \AA)$, graphite monochromator, ω scans, data collection and cell refinement with SMART [47], data reduction with SAINT [47], experimental absorption correction with SADABS [48].

Structure Analysis and Refinement: The structure was solved by Direct Methods (SHELXS-97) [49], refinement was carried out by full-matrix least-squares on F^{2} using the SHELXL-97 program suite [49]. All non-hydrogen positions were found and refined with anisotropic temperature factors. Hydrogen atoms on oxygen $(-\mathrm{OH})$ were found and fully refined in $\mathbf{4}$ and 5. Hydrogen atoms on C (phenyl, $\mathrm{CH}, \mathrm{CH}_{2}$ and
CH_{3}) were calculated with appropriate riding models (AFIX $43,13,23$ and 33 , respectively) and $U_{\text {eq }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{CH})$ or $U_{\text {eq }}(\mathrm{H})=1.5 U_{\text {eq }}\left(\mathrm{CH}_{3}\right)$. Details of the X-ray structure determinations and refinements are provided in Table 2. Graphics were drawn with DIAMOND (Version 3.1c) [50]. Computations on the supramolecular interactions were carried out with PLATON for Windows [15].

CCDC 636583 for 4, 636584 for 5, and 636585 for 7 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgements

We thank the Alexander von Humboldt Foundation (AvH), Bonn, for offering a fellowship to M. Enamullah. Our sincere thanks go to Dr. Klaus Ditrich (ChiPros) at BASF, Ludwigshafen for providing the $(R)-(X)$ ethylamines. We acknowledge the financial support from the Ministry of Science and Information \& Communication Technology (MSICT), Project 2004/05, Dhaka, Bangladesh and from DFG, grant Ja466/14-1.
[1] A.E.E. Amr, M. Abo-Ghalia, M. M. Abdalah, Z. Naturforsch. 2006, 61b, 1335; R. O. Doroschuk, E. G. Petkova, R. D. Lampeka, K. V. Domasevitch, M. V. Gorichko, Z. Naturforsch. 2006, 61b, 1361; W. Hoffmüller, H. Dialer, W. Beck, Z. Naturforsch. 2005, 60b, 1278; R. Urban, W. Beck, Z. Naturforsch. 2005, 60b, 1071; S. Klingelhöfer, M. Wiebcke, P. Behrens, Z. Anorg. Allg. Chem. 2007, 633, 113; T. Ederer, R. S. Herrick, W. Beck, Z. Anorg. Allg. Chem. 2007, 633, 235; B. Wisser, C. Janiak, Z. Anorg. Allg. Chem. 2007, in press; T. Hauck, K. Sünkel, W. Beck. Z. Anorg. Allg. Chem. 2006, 632, 2305; J.-P. Li, J.-S. Zhao, Z. Anorg. Allg. Chem. 2006, 632, 1897; R. Urban, W. Beck, Z. Anorg. Allg. Chem. 2006, 632, 955; L.F. Ma, L. Y. Wang, J. G. Wang, Y. F. Wang, X. Feng, Z. Anorg. Allg. Chem. 2006, 632, 487; O. Seewald, U. Florke, H. Egold, H. J. Haupt, M. Schwefer, Z. Anorg. Allg. Chem. 2006, 632, 204; H. Brunner, C. Keck, Z. Anorg. Allg. Chem. 2005, 631, 2555; T. J. Colacot, N. S. Hosmane, Z. Anorg. Allg. Chem. 2005, 631, 2659; R. Urban, D. Veghini, H. Berke, W. Beck, Z. Anorg. Allg. Chem. 2005, 631, 2715; G. Müller, J. Brand, Z. Anorg. Allg. Chem. 2005, 631, 2820; K. Lappalainen, K. Yliheikkila, A. S. Abu-Surrah, M. Polamo, M. Leskela, T. Repo, Z. Anorg. Allg. Chem. 2005, 631, 763; B. Paul, C. Näther, K. M. Fromm, C. Janiak, CrystEngComm. 2005, 7, 309; G. Vujevic, C. Janiak, Z. Anorg. Allg. Chem. 2003, 629, 2585.
[2] X. G. Zhou, J. Zhao, A. M. Santos, F. E. Kühn, Z. Naturforsch. 2004, 59b, 1223; D. Koch, W. Hoffmüller, K. Polborn, W. Beck, Z. Naturforsch. 2001, 56b, 403.
[3] C.-M. Chee, J.-S. Huang, Coord. Chem. Rev. 2003, 242, 97; P. G. Cozzi, Chem. Soc. Rev. 2004, 33, 410.
[4] E. D. McKenzie, S. J. Selvey, Inorg. Chim. Acta 1985, 101, 127; T. Akitsu, Y. Einaga, Acta Cryst. 2004, C60, m640; L. Z. Flores-Lopez, M. Parra-Hake, R. Somanathan, P.J. Walsh, Organometallics 2000, 19, 2153.
[5] H. Brunner, M. Niemetz, M. Zabel, Z. Naturforsch. 2000, 55b, 145; H. Sakiyama, H. Okawa, N. Matsumoto, S. Kida, J. Chem. Soc., Dalton Trans. 1990, 2935; H. Sakiyama, H. Okawa, N. Matsumoto, S. Kida, Bull. Chem. Soc. Jpn. 1991, 64, 2644; C. Evans, D. Luneau, J. Chem. Soc., Dalton Trans. 2002, 83; J. M. Femandez, O. L. Ruiz-Ramirez, R. A. Toscano, N. Macias-Ruvalcaba, M. Aguilar-Martinez, Transition Met. Chem. 2000, 25, 511.
[6] Asymmetric hydrogenation of acetophenone: I. Karamé, M. L. Tommasino, R. Faure, M. Lemaire, Eur. J. Org. Chem. 2003, 1271; I. Karamé, M. Jahjah, A. Messaoudi, M. L. Tommasino, M. Lemaire, Tetrahedron: Asymmetry 2004, 15, 1569.
[7] Asymmetric epoxidation of olefins: P. Guo, K.-Y. Wong, Electrochem. Commun. 1999, 1, 559.
[8] Asymmetric trimethylsilylcyanation of aromatic aldehydes: Z.-H. Yang, L.-X. Wang, Z.-H. Zhou, Q.-L.

Zhou, C.-C. Tang, Tetrahedron: Asymmetry 2001, 12, 1579.
[9] Dioxomolybdenum and oxovanadium complexes with bi-, tri- and tetra-dentate chiral Schiff bases: C. Zhang, G. Rheinwald, V. Lozan, B. Wu, P.-G. Lassahn, H. Lang, C. Janiak, Z. Anorg. Allg. Chem. 2002, 628, 1259; S. P. Rath, T. Ghosh, S. Mondal, Polyhedron 1997, 16, 4179; G. Santoni, D. Rehder, J. Inorg. Biochem. 2004, 98, 758.
[10] H. Brunner, R. Oeschey, B. Nuber, J. Chem. Soc., Dalton Trans. 1996, 1499.
[11] H. Brunner, T. Zwack, M. Zabel, W. Beck, A. Boehm, Organometallics 2003, 22, 1741.
[12] S. K. Mandal, A. R. Chakravarty, J. Organomet. Chem. 1991, 417, C59.
[13] S. K. Mandal, A. R. Chakravarty, J. Chem. Soc., Dalton Trans. 1992, 1627; S. K. Mandal, A.R. Chakravarty, Inorg. Chem. 1993, 32, 3851.
[14] H. Brunner, H. Fisch, J. Organomet. Chem. 1987, 335, 1; H. Brunner, H. Leyerer, J. Organomet. Chem. 1987, 334, 369.
[15] R. Bonnaire, C. Potvin, J. M. Manoli, Inorg. Chim. Acta 1980, 45, L255.
[16] H. Brunner, A. F. M. M. Rahman, Z. Naturforsch. 1983, 38b, 1332.
[17] C. A. Rogers, B. O. West, J. Organomet. Chem. 1974, 70, 445.
[18] R. Bonnaire, J. M. Manoli, C. Potvin, N. Platzer, N. Goasdoue, D. Davoust, Inorg. Chem. 1982, 21, 2032.
[19] R. J. Cozens, K. S. Murray, B. O. West, J. Organomet. Chem. 1971, 27, 399.
[20] N. Platzer, N. Goasdoue, R. Bonnaire, J. Organomet. Chem. 1978, 160, 455.
[21] M. Enamullah, M. Hasegawa, T. Hoshi, Abstract, Bangladesh Chem. Soc. Conf., Jahangirnagar University (Bangladesh) 2003; M. Enamullah, M. Hasegawa, J. Okubo, T. Hoshi, Abstract, Bangladesh Chem. Soc. Conf., Dhaka University (Bangladesh) 2004.
[22] M. Enamullah, M. Hasegawa, J. Okubo, T. Hoshi, J. Bangladesh Chem. Soc. 2005, 18, 165; M. Enamullah, M. Uddin, W. Linert, J. Coord. Chem., in press.
[23] M. Enamullah, A. Sharmin, M. Hasegawa, T. Hoshi, A. C. Chamayou, C. Janiak, Eur. J. Inorg. Chem. 2006, 2146.
[24] M. Enamullah, M. Uddin, K. S. Hagen, C. Janiak, to be submitted.
[25] J. G. Leipoldt, E. C. Grobler, Inorg. Chim. Acta 1983, 72, 17.
[26] A.P. Martinez, M. P. Garcia, F. J. Lahoz, L. A. Oro, Inorg. Chem. Commun. 2002, 5, 245.
[27] G. S. Rodman, K. R. Mann, Inorg. Chem. 1988, 27, 3338.
[28] C. Tejel, M. A. Ciriano, M. Bordonaba, J. A. Lopez, F. J. Lahoz, L. A. Oro, Inorg. Chem. 2002, 41, 2348.
[29] J. C. Bayon, G. Net, P. G. Rasmussen, J. B. Kolowich, J. Chem. Soc., Dalton Trans. 1987, 3003.
[30] R. Bonnaire, J. M. Manoli, N. Potvin, N. Platzer, N. Goasdoue, Inorg. Chem. 1981, 20, 2691.
[31] R. Ugo, G. La Monica, S. Cenini, F. Bonati, J. Organomet. Chem. 1968, 11, 159.
[32] J. Kriz, K. Bouchal, J. Organomet. Chem. 1974, 64, 255.
[33] R. Uson, L.A. Oro, M.A. Ciriano, R.J. Gonzales, J. Organomet. Chem. 1981, 205, 259.
[34] S.L. James, D. M. P. Mingos, X. Xu, A.J.P. White, D. J. Williams, J. Chem. Soc., Dalton Trans. 1998, 1335.
[35] R. Aumann, I. Goettker-Schnetmann, R. Froehlich, P. Saarenketo, C. Holst, Chem. Eur. J. 2001, 7, 711.
[36] H. H. Monfared, O. Pouralimardan, C. Janiak, Z. Naturforsch. 2007, 62, in press.
[37] C. Janiak, J. Chem. Soc., Dalton Trans. 2000, 3885.
[38] T. Dorn, C. Janiak, K. Abu-Shandi, CrystEngComm. 2005, 7, 633; K. Abu-Shandi, H. Winkler, H. Paulsen, R. Glaum, B. Wu, C. Janiak, Z. Anorg. Allg. Chem. 2005, 631, 2705; S. Banerjee, A. Ghosh, B. Wu, P.-G. Lassahn, C. Janiak, Polyhedron 2005, 24, 593; S. Banerjee, B. Wu, P.-G. Lassahn, C. Janiak, A. Ghosh, Inorg. Chim. Acta 2005, 358, 535; C. Zhang, G. Rheinwald, V. Lozan, B. Wu, P.-G. Lassahn, H. Lang, C. Janiak, Z. Anorg. Allg. Chem. 2002, 628,1259 ; E. Craven, E. Mutlu, D. Lundberg, S. Temizdemir, S. Dechert, H. Brombacher, C. Janiak, Polyhedron 2002, 21, 553.
[39] X.-J. Yang, F. Drepper, B. Wu, W.-H. Sun, W. Haehnel, C. Janiak, Dalton Trans. 2005, 256, and supplementary material therein.
[40] M. Nishio, CrystEngComm. 2004, 6, 130; M. Nishio, M. Hirota, Y. Umezawa, The $C H / \pi$ interaction, WileyVCH, New York, 1998; Y. Umezawa, S. Tsuboyama, K. Honda, J. Uzawa, M. Nishio, Bull. Chem. Soc. Jpn. 1998, 71, 1207.
[41] C. Janiak, S. Temizdemir, S. Dechert, W. Deck, F. Girgsdies, J. Heinze, M. J. Kolm, T. G. Scharmann, O. M. Zipffel, Eur. J. Inorg. Chem. 2000, 1229.
[42] T. Dorn, A.-C. Chamayou, C. Janiak, New. J. Chem. 2006, 30, 156.
[43] G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, IUCr Monograph on Crystallography, Vol. 9, Oxford Science, Oxford, 1999.
[44] Based on a search of the Cambridge Structure Database (CSD), Version 5.27 (November 2005) with 2 updates (January 2006, May 2006).
[45] G. Giordano, R. H. Crabtree, Inorg. Synth. 1990, 28, 88.
[46] Z. Nagy-Magos, S. Vastag, B. Heil, L. Marko, J. Organomet. Chem. 1979, 171, 97; Z. Nagy-Magos, P. Kvintovics, L. Marko, Trans. Met. Chem. 1980, 5, 186.
[47] SMART, Data Collection Program for the CCD AreaDetector System; SAINT, Data Reduction and Frame Integration Program for the CCD Area-Detector System. Bruker Analytical X-ray Systems Inc., Madison, Wisconsin (USA) 1997.
[48] G. Sheldrick, SADABS, Area-detector absorption correction, University of Göttingen, Göttingen (Germany) 1996.
[49] G. M. Sheldrick, SHELXS/L-97, Programs for Crystal

Structure Analysis, University of Göttingen, Göttingen (Germany) 1997.
[50] K. Brandenburg, DIAMOND (Version 3.1c), Crystal and Molecular Structure Visualization, Crystal Impact, K. Brandenburg \& H. Putz Gbr, Bonn (Germany) 2004.
[51] A. L. Spek, Platon, A. Multipurpose Crystallographic Tool, Utrecht University, Utrecht (The Netherlands) 2000. See also: A.L. Spek, Acta Crystallogr. 1990, A46, C34. Windows implementation: L. J. Farrugia, Version 80205, University of Glasgow, Glasgow, Scotland (U. K.) 2005.
[52] H. D. Flack, Acta Crystallogr. 1983, A39, 876.

