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The compounds β -RE(BO2)3 [RE = Nd (neodymium meta-borate), Sm (samarium meta-borate)
and Gd (gadolinium meta-borate)] were synthesized under high-pressure and high-temperature con-
ditions in a Walker-type multianvil apparatus at 3.5 GPa (Nd), 7.5 GPa (Sm, Gd) and 1050 ◦C. The
crystal structures were determined by single crystal X-ray diffraction data collected at r. t. (Sm, Gd)
and at −73 ◦C (Nd), respectively. The structures are isotypic with the already known ambient-pressure
phases β -RE(BO2)3 (RE = (Tb, Dy) and the high-pressure phases β -RE(BO2)3 (RE = Ho–Lu).
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Introduction

In recent years, a systematic investigation of rare
earth meta-borates with the composition RE(BO2)3 un-
der ambient- and high-pressure conditions led to the
discovery of new modifications and the clarification of
the stability ranges. Up to now, four modifications of
rare earth meta-borates are known, designated chrono-
logically as α-, β -, γ-, and δ -RE(BO2)3. The mono-
clinic phases α-RE(BO2)3 (RE = La [1, 2], Ce [3],
Pr [4], Nd [5, 6], Sm [7], Eu [8], Gd [7], Tb [9]) crys-
tallize in the space group I2/a. They are built up of
chains of triangular [BO3]3− and tetrahedral [BO4]5−
units, representing the longest known phases. In 2003,
Nikelski and Schleid solved the structure of the sec-
ond polymorph β -RE(BO2)3 (RE = Tb), built up ex-
clusively of [BO4]5− tetrahedra, forming corrugated
layers [10]. This second modification was also ob-
served with RE = Dy under ambient-pressure condi-
tions. However, the synthesis of the β -modification
with the smaller rare earth cations Ho–Lu required
the use of high-pressure / high-temperature conditions
(7.5 GPa, 1273 K) [11]. In 2004, we were able to re-
alize a third modification γ-RE(BO2)3 with the larger
rare earth cations La–Nd at 7.5 GPa and 1273 K, which
exhibits a highly condensed network of [BO4]5− tetra-
hedra [12]. Due to the remarkable difference between
ambient-pressure conditions and 7.5 GPa, we investi-
gated the pressure range below 7.5 GPa and discov-
ered a fourth modification, δ -RE(BO2)3, at 5.5 GPa
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and 1323 K with the rare earth cations La3+ and Ce3+

[13, 14]. In accordance with the pressure coordina-
tion rule, δ -RE(BO2)3 consists exclusively of [BO4]5−
tetrahedra in contrast to the α-modification, which ex-
hibits [BO3]3− and [BO4]5− units. In principle, com-
pounds exhibiting [BO3]3− groups can be transformed
into more dense modifications with [BO4]5− groups.
Therefore, we tried to synthesize more dense modifi-
cations of α-RE(BO2)3 (RE = Nd, Sm, Gd) under high
pressure. We succeeded in the transformation into the
phases β -RE(BO2)3 (RE = Nd, Sm, and Gd), about
which we report below.

Experimental Section

The starting materials for the syntheses of β -RE(BO2)3
(RE = Nd, Sm, Gd) were 3 : 1 molar mixtures of B2O3 (Strem
Chemicals, Newburyport, USA; 99.9 %) with the rare earth
oxides RE2O3 (RE = Nd, Sm, Gd; 99.9 %). The compounds
were compressed and heated via a multianvil assembly. De-
tails of the assembly can be found in the literature [15 – 18].
For the synthesis of β -Nd(BO2)3, an 18/11 assembly was
compressed within 80 min to 3.5 GPa and heated to 1323 K in
the following 25 min. Having maintained this temperature for
5 min, the sample was cooled to about 700 K during further
25 min. Afterwards, the sample was quenched to r. t. For the
syntheses of β -RE(BO2)3 (RE = Sm, Gd), an 18/11 (Gd) and
an 14/8 assembly (Sm) were compressed within 3 h (18/11) /
2 h (14/8) up to 7.5 GPa and heated up to 1323 K in the fol-
lowing 10 min. Having kept this temperature for 10 min, the
samples were cooled down to r. t. within 10 min. After the de-



766 H. Emme et al. · The High-pressure Phases β -RE(BO2)3 (RE = Nd, Sm, Gd)

Empirical formula β -Nd(BO2)3 β -Sm(BO2)3 β -Gd(BO2)3
Molar mass [g mol−1] 272.67 278.78 285.68
Unit cell dimensions

a [pm] 1616.2(3) 1612.5(2) 1602.8(2)
b [pm] 747.4(2) 746.02(4) 742.70(4)
c [pm] 1244.2(3) 1240.87(7) 1232.17(7)
V [nm3] 1.5028(5) 1.4927(2) 1.4668(2)

Calculated density [g cm−3] 4.82 4.96 5.18
Crystal size [µm3] 50×35×30 60×40×20 60×50×50
Temperature [◦C] −73(2) 20(2) 20(2)
Detector distance [mm] 40 40 45
Exposure time [min] 14 10 15
ω range [◦]; increment [◦] 0 – 180; 1.2 0 – 180; 1.1 0 – 180; 1.2
Transm. ratio [max/min] 0.469 / 0.663 0.319 / 0.595 0.414 / 0.487
Absorption coefficient [mm−1] 13.8 15.7 18.0
F(000) 1968 2000 2032
θ range [◦] 3.2 to 31.0 3.4 to 30.0 3.0 to 31.6
Range in hkl ±23, ±10, ±18 ±22, ±9, −17/+15 ±23, ±10, −18/+17
Total no. reflections 16464 15072 16539
Independent reflections 2550 (Rint = 0.080) 2209 (Rint = 0.149) 2490 (Rint = 0.066)
Reflections with I ≥ 2σ(I) 1897 (Rσ = 0.060) 1587 (Rσ = 0.089) 1813 (Rσ = 0.066)
Data/parameters 2550 / 167 2209 / 169 2490 / 196
Goodness-of-fit on F2 0.927 0.855 0.796
Final R indices [I ≥ 2σ(I)] R1 = 0.042 R1 = 0.034 R1 = 0.020

wR2 = 0.097 wR2 = 0.066 wR2 = 0.031
R indices (all data) R1 = 0.063 R1 = 0.056 R1 = 0.041

wR2 = 0.102 wR2 = 0.070 wR2 = 0.033
Largest diff. peak / hole [e Å−3] 2.86 / −2.93 2.09 / −2.22 1.12 / −1.31

Table 1. Crystal data and
structure refinement for β -
RE(BO2)3 (RE = Nd, Sm, Gd),
space group Pnma, Z = 16.

compression of the assemblies the recovered octahedral pres-
sure media were broken apart. The samples were carefully
separated from the surrounding boron nitride crucibles. The
compounds β -RE(BO2)3 (RE = Nd, Sm, Gd) were gained as
single-phase crystalline products [yield: ca. 75 mg (18/11) /
ca. 40 mg (14/8) per run]. The substances are air- and water-
resistant, crystallizing as thin colourless (Sm, Gd) and pale-
pink (Nd) platelets.

Crystal structure analysis

Small, irregularly shaped single crystals of the com-
pounds β -RE(BO2)3 (RE = Nd, Sm, Gd) were first exam-
ined through a Buerger camera, equipped with an image
plate system (Fujifilm BAS-1800) in order to establish both
the symmetry and the suitability for intensity data collec-
tion. The single crystal intensity data were collected at r. t.
(Sm, Gd) and at −73 ◦C (Nd) by a Stoe IPDS-I diffractome-
ter with graphite-monochromatized MoKα radiation (λ =
71.073 pm). For β -Nd(BO2)3, an empirical absorption cor-
rection was applied on the basis of ψ-scan data. A numeri-
cal absorption correction (HABITUS [19]) was used for the
data of β -RE(BO2)3 (RE = Sm and Gd). All relevant de-
tails of the data collections and evaluations are listed in Ta-
ble 1. The atomic parameters of β -Dy(BO2)3 [11] were taken
as starting values for all three meta-borates, and the struc-
tures were refined by full-matrix least-squares on F2 using
SHELXL-97 [20]. Anisotropic atomic displacement parame-

Table 2. Atomic coordinates and isotropic equivalent dis-
placement parameters Ueq (Å2) for β -Nd(BO2)3 (space
group Pnma). Ueq is defined as one third of the trace of the
orthogonalized Uij tensor.

Atom Wyckoff- x y z Ueq
Position

Nd1 4c 0.17059(4) 1/4 0.92991(5) 0.0061(2)
Nd2 4c 0.12034(4) 3/4 0.00416(5) 0.0071(2)
Nd3 4c 0.04745(4) 1/4 0.58560(5) 0.0064(2)
Nd4 4c 0.12564(4) 3/4 0.72233(5) 0.0070(2)
B1 8d 0.2831(6) 0.931(2) 0.8123(7) 0.008(2)
B2 8d 0.9403(5) 0.928(2) 0.6558(7) 0.005(2)
B3 8d 0.0273(6) 0.061(2) 0.8199(8) 0.008(2)
B4 8d 0.1554(5) 0.928(2) 0.4817(7) 0.005(2)
B5 8d 0.1105(5) 0.079(2) 0.1458(7) 0.007(2)
B6 8d 0.2568(5) 0.932(2) 0.1297(7) 0.005(2)
O1 4c 0.1616(6) 3/4 0.5321(7) 0.009(2)
O2 8d 0.2816(4) 0.0558(8) 0.8997(5) 0.006(2)
O3 8d 0.9270(4) 0.0496(8) 0.5665(5) 0.008(2)
O4 8d 0.0500(4) 0.9386(7) 0.1254(5) 0.005(2)
O5 8d 0.3701(4) 0.9274(7) 0.7665(5) 0.007(2)
O6 8d 0.1852(3) 0.0352(7) 0.0813(4) 0.005(2)
O7 4c 0.0596(5) 1/4 0.8012(7) 0.007(2)
O8 4c 0.2256(5) 3/4 0.1363(7) 0.009(2)
O9 8d 0.0930(4) 0.9636(7) 0.8723(5) 0.007(2)
O10 8d 0.1666(4) 0.0584(8) 0.5675(5) 0.007(2)
O11 4c 0.0796(5) 1/4 0.1105(6) 0.004(2)
O12 4c 0.2556(5) 3/4 0.8503(7) 0.006(2)
O13 4c 0.0471(6) 1/4 0.3911(8) 0.009(2)
O14 8d 0.0171(4) 0.9846(8) 0.7087(5) 0.007(2)
O15 8d 0.2249(4) 0.9861(9) 0.7323(5) 0.008(2)
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Table 3. Atomic coordinates and isotropic equivalent dis-
placement parameters Ueq (Å2) for β -Sm(BO2)3 (space
group Pnma). Ueq is defined as one third of the trace of the
orthogonalized Uij tensor.

Atom Wyckoff- x y z Ueq
Position

Sm1 4c 0.17139(3) 1/4 0.93085(4) 0.0087(2)
Sm2 4c 0.12001(3) 3/4 0.00528(5) 0.0115(2)
Sm3 4c 0.04787(3) 1/4 0.58599(4) 0.0088(2)
Sm4 4c 0.12643(3) 3/4 0.72539(4) 0.0096(2)
B1 8d 0.2831(6) 0.929(2) 0.8130(7) 0.011(2)
B2 8d 0.9416(5) 0.929(2) 0.6557(7) 0.009(2)
B3 8d 0.0296(5) 0.060(2) 0.8207(7) 0.010(2)
B4 8d 0.1551(5) 0.921(2) 0.4808(7) 0.008(2)
B5 8d 0.1101(5) 0.078(2) 0.1445(7) 0.009(2)
B6 8d 0.2562(5) 0.932(2) 0.1288(7) 0.007(2)
O1 4c 0.1605(4) 3/4 0.5340(6) 0.007(2)
O2 8d 0.2821(3) 0.0590(8) 0.8989(4) 0.010(2)
O3 8d 0.9276(3) 0.0519(9) 0.5671(4) 0.010(2)
O4 8d 0.0491(3) 0.9363(8) 0.1239(4) 0.011(2)
O5 8d 0.3706(3) 0.9272(7) 0.7656(4) 0.008(2)
O6 8d 0.1849(3) 0.0341(8) 0.0801(4) 0.009(2)
O7 4c 0.0609(4) 1/4 0.8020(6) 0.009(2)
O8 4c 0.2246(4) 3/4 0.1383(6) 0.009(2)
O9 8d 0.0940(3) 0.9617(8) 0.8742(4) 0.010(2)

O10 8d 0.1665(3) 0.0600(8) 0.5662(4) 0.009(2)
O11 4c 0.0776(5) 1/4 0.1082(6) 0.010(2)
O12 4c 0.2562(5) 3/4 0.8528(6) 0.010(2)
O13 4c 0.0473(5) 1/4 0.3922(6) 0.010(2)
O14 8d 0.0189(3) 0.9834(8) 0.7078(4) 0.010(2)
O15 8d 0.2247(3) 0.9839(9) 0.7303(5) 0.011(2)

ters were used for all atoms except the boron atoms of β -
Nd(BO2)3, which were refined isotropically. The final differ-
ence Fourier syntheses revealed no significant residual peaks
in all refinements. The positional parameters are listed in Ta-
bles 2 – 4. Anisotropic displacement parameters, interatomic
distances, and interatomic angles are available from the
Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-
Leopoldshafen (Germany), by quoting the Registry No’s.
CSD-417645 (β -Nd(BO2)3), CSD-417643 (β -Sm(BO2)3),
and CSD-417644 (β -Gd(BO2)3).

Results and Discussion

Fig. 1 shows a view of the crystal structure of β -
RE(BO2)3, which is composed of strongly corrugated
layers of corner sharing [BO4]5− tetrahedra. A detailed
description of this structure type can be found in the
references [10] and [11]. The characteristic aspects of
the new compounds are briefly reported in the follow-
ing.

The B–O bond lengths in β -RE(BO2)3 (RE = Nd,
Sm, Gd) are in the range of 142.3(2) – 153.4(2) pm in
β -Nd(BO2)3, 143.3(2) – 153.5(2) pm in β -Sm(BO2)3,
and 142.8(6)– 153.1(5) pm in β -Gd(BO2)3, similar to

Table 4. Atomic coordinates and isotropic equivalent dis-
placement parameters Ueq (Å2) for β -Gd(BO2)3 (space
group Pnma). Ueq is defined as one third of the trace of the
orthogonalized Uij tensor.

Atom Wyckoff- x y z Ueq
Position

Gd1 4c 0.17134(2) 1/4 0.93258(2) 0.00408(7)
Gd2 4c 0.12070(2) 3/4 0.00677(2) 0.00421(7)
Gd3 4c 0.04789(2) 1/4 0.58769(2) 0.00432(7)
Gd4 4c 0.12680(2) 3/4 0.72781(2) 0.00431(7)
B1 8d 0.2825(3) 0.9301(8) 0.8136(4) 0.005(2)
B2 8d 0.9416(3) 0.9267(8) 0.6540(4) 0.004(2)
B3 8d 0.0311(3) 0.0608(8) 0.8217(4) 0.006(2)
B4 8d 0.1541(3) 0.9235(7) 0.4831(4) 0.006(2)
B5 8d 0.1100(3) 0.0767(7) 0.1439(4) 0.0045(9)
B6 8d 0.2575(3) 0.9304(8) 0.1297(4) 0.0045(9)
O1 4c 0.1607(2) 3/4 0.5376(3) 0.0037(9)
O2 8d 0.2819(2) 0.0622(5) 0.8992(5) 0.0047(7)
O3 8d 0.9292(2) 0.0537(5) 0.5663(2) 0.0035(6)
O4 8d 0.0492(2) 0.9358(4) 0.1238(2) 0.0041(6)
O5 8d 0.3705(2) 0.9259(4) 0.7655(2) 0.0029(6)
O6 8d 0.1853(2) 0.0350(5) 0.0789(2) 0.0036(6)
O7 4c 0.0627(3) 1/4 0.8015(3) 0.0061(9)
O8 4c 0.2249(2) 3/4 0.1391(3) 0.0038(9)
O9 8d 0.0948(2) 0.9605(5) 0.8756(2) 0.0050(6)
O10 8d 0.1655(2) 0.0625(4) 0.5661(2) 0.0037(6)
O11 4c 0.0791(2) 1/4 0.1079(3) 0.0038(9)
O12 4c 0.2553(3) 3/4 0.8535(3) 0.0060(9)
O13 4c 0.0484(3) 1/4 0.3952(3) 0.0048(9)
O14 8d 0.0197(2) 0.9793(5) 0.7088(2) 0.0039(7)
O15 8d 0.2240(2) 0.9828(5) 0.7314(2) 0.0048(7)

Fig. 1. Crystal structure of the meta-borates β -RE(BO2)3
(RE = Nd, Sm, Gd).

the B–O bond lengths found in the isotypic compounds
with RE = Tb–Lu. The distances Nd–O, Sm–O, and
Ho–O are in the ranges 233.1(6)–296.0(6), 230.6(6)–
289.9(7), and 228.6(3)–286.7(4) pm, respectively. The
B–O bond lengths of the three-coordinate O(5) atoms
in the [OB3]7+ groups of the compounds vary in the
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Table 5. Comparison of the lattice parameters (pm) and vol-
umes (nm3) of RE(BO2)3 (RE = Tb–Lu).
Compound a b c V
β -Nd(BO2)3 [*] 1616.2(3) 747.4(2) 1244.2(3) 1.503(1)
β -Sm(BO2)3 [*] 1612.5(2) 746.02(4) 1240.87(7) 1.492(1)
β -Gd(BO2)3 [*] 1602.9(2) 742.70(4) 1232.17(7) 1.467(1)
β -Tb(BO2)3 [10] 1598.97(9) 741.39(4) 1229.58(7) 1.458(1)
β -Dy(BO2)3 [11] 1592.4(1) 739.7(1) 1225.0(1) 1.443(1)
β -Ho(BO2)3 [11] 1590.0(4) 739.3(2) 1223.1(4) 1.438(1)
β -Er(BO2)3 [11] 1589.1(2) 737.6(1) 1219.1(1) 1.429(1)
β -Tm(BO2)3 [11] 1582.6(3) 736.8(3) 1216.4(3) 1.418(1)
β -Yb(BO2)3 [11] 1579.1(3) 735.2(2) 1214.0(3) 1.410(1)
β -Lu(BO2)3 [11] 1576.7(3) 734.9(2) 1211.7(3) 1.404(1)
* This work.

Fig. 2. Plot of the lattice parameters of the rare earth meta-
borates β -RE(BO2)3 (RE = Nd–Lu, except Pm and Eu).

ranges 149.1(2)–153.4(2) pm in Nd(BO2)3, 150.4(2)–
153.5(2) pm in Sm(BO2)3, and 151.0(2)–153.1(5) pm
in Gd(BO2)3.

Table 5 and Fig. 2 present a survey of the lattice
parameters of all known β -RE(BO2)3 phases (RE =
Nd–Lu except Pm and Eu). The new meta-borates fit
well into the scheme of the known compounds. Nd3+,
Sm3+, and Gd3+ represent the largest rare earth ions in
this series, and here we also observe the trend towards
a much more slowly decreasing lattice parameter b in
contrast to a and c, as we already noted for the com-
pounds β -RE(BO2)3 (RE = Dy–Lu). This is caused by
the ability to contract more strongly along the a and
c direction in the crystal structure (Fig. 1), in contrast
to b (layers of [BO4]5− tetrahedra), in accordance with
the shrinking radius of the RE3+ ions (lanthanoid con-
traction).

Fig. 3 illustrates the modifications of all rare earth
meta-borates synthesized up to now. The scheme
distinguishes between syntheses under ambient- (X)
and high-pressure (∅) conditions. Next to La(BO2)3,
which can be synthesized in three different modifi-
cations (α , β , δ ), Nd(BO2)3 is the second exam-
ple, that can be synthesized in three different struc-
tures (α , β , γ), depending on the applied pressure.
Up to now, it is not clear if the phases β -RE(BO2)3
(RE = Nd, Sm, Gd) can also be synthesized under
ambient-pressure conditions, as it is possible for RE =
Tb, Dy. However, high-pressure conditions favour the
formation of the β -modifications due to the densi-
fication effect [21]. At pressures of 3.5 GPa (Nd)
and 7.5 GPa (Sm, Gd) the compounds crystallize in
the orthorhombic β -RE(BO2)3 structure, possessing
a higher density than the corresponding α-phases.
E. g., α-Nd(BO2)3 has a density of 4.50 g cm−3 and
the more dense modification β -Nd(BO2)3 presented
here exhibits a value of 4.82 g cm−3. In analogy, β -
Sm(BO2)3 and β -Gd(BO2)3 possess values of 4.96 and
5.18 g cm−3, which are higher than the densities of the
α-modifications with 4.63 and 4.84 g cm−3, respec-
tively.

Thermal behaviour of β -Sm(BO2)3 and β -Gd(BO2)3

In situ X-ray powder diffraction experiments were
performed on a STOE STADI P powder diffractome-
ter (MoKα radiation, λ = 71.073 pm) with a com-
puter controlled STOE furnace: The sample was en-
closed in a quartz capillary and heated from r. t. to
500 ◦C in 100 ◦C steps, and from 500 ◦C to 1100 ◦C in
50 ◦C steps. Afterwards, the sample was cooled down
to 500 ◦C in 50 ◦C steps, and from 500 ◦C to r. t. in
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Fig. 3. Schematic view of the existing
modifications of the rare earth meta-
borates RE(BO2)3.

Fig. 4. In situ X-ray powder diffraction experiments on β -Sm(BO2)3 at different temperatures.

Fig. 5. In situ X-ray powder diffraction experiments on β -Gd(BO2)3 at different temperatures.

100 ◦C steps. After each heating step, diffraction pat-
terns of β -Sm(BO2)3 and β -Gd(BO2)3 were recorded
over the angular range 3◦ ≤ 2θ ≤ 20◦ and 5◦ ≤ 2θ ≤

17◦, respectively. Fig. 4 [β -Sm(BO2)3] and Fig. 5
[β -Gd(BO2)3] illustrate the temperature programmed
X-ray powder diffraction patterns of both compounds.
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Interestingly, the thermal behaviour of β -Sm(BO2)3
and β -Gd(BO2)3 is different. For β -Sm(BO2)3, we ob-
serve a transformation of the high-pressure β -phase
into the normal-pressure α-phase in the temperature
range 1000 – 1050 ◦C. At r. t., α-Sm(BO2)3 is the only
detectable phase. In contrast, β -Gd(BO2)3 starts to de-
compose at 900 ◦C into the high-temperature ortho-
borate µ-GdBO3 [22, 23] and presumably B2O3. The
latter is not detectable in this measurement, because it
is liquid at this temperature (melting point of B2O3:
475 ◦C). The decomposition process is complete at
1100 ◦C. Successive cooling to r. t. reveals the transfor-
mation of the high-temperature phase µ-GdBO3 into
the room-temperature phase π-GdBO3 in the temper-

ature range 600 – 500 ◦C. At r. t., boron oxide remains
in an amorphous state.
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