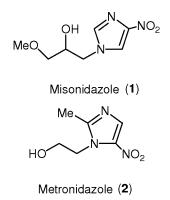
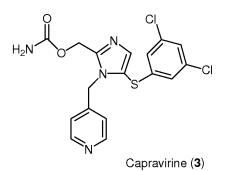
Nitroimidazoles, Part 3. Synthesis and *anti*-HIV Activity of New N-Alkyl-4-nitroimidazoles Bearing Benzothiazole and Benzoxazole Backbones

Yaseen A. Al-Soud^a, Haitham Al-Sa'doni^a, Houssain A. S. Amajaour^a, and Najim A. Al-Masoudi^b

^a Department of Chemistry, College of Science, University of Al al-Bayt, Al-Mafraq, Jordan
^b Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany

Reprint requests to Dr. N. A. Al-Masoudi. E-mail: dr@al-masoudi.de

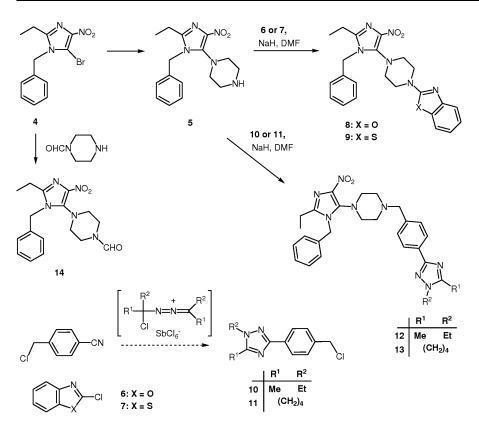

Z. Naturforsch. 2006, 62b, 523-528; received May 29, 2006


A series of 4-nitroimidazole derivatives bearing substituted piperazines (5, 8, 9, 12, 14, 16, 17, and 19-21) were synthesized with the aim to develop new non-nucleoside reverse transcriptase inhibitors (NNRTIs). The newly synthesized compounds were assayed against HIV-1 and HIV-2 in MT-4 cells. All compounds are inactive, except compound 21 which showed inhibition of HIV-1 with EC₅₀ 0.20 μ g/mL, and therapeutic indexes (SI) of 12.

Key words: anti-HIV Activity, Benzothiazoles, Benzoxazoles, 4-Nitroimidazoles, NNRTIs

Introduction

Nitro-substituted haloimidazoles are considered as compounds with important biological activity as antibacterial agents [1, 2], potential radiosensitizers [3] and anticancer agents [4, 5]. Dacarbazine[®] (DTIC) [6] is synthesized as an alkylating agent for inhibition of *de novo* purine synthesis, while misonidazole **1** [7] has been reported as a potential anticancer agent. Other imidazole derivatives, such as clotrinazole [1-(2-chlorotrityl)-1*H*-imidazole] [8,9] and metronidazole (Flagyl) **2** [10], have been considered as potent fungicides and/or used as antiprotozoal agents (especially for treatment of *Trichomonas vaginalis, Entamoeba histolytica* and *Giardia lamblia*). Capravirine, (S-1153, **3**) is an imidazole analogue with a high *anti*-HIV inhibitory activity [11].

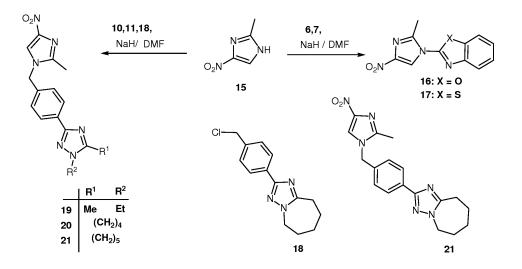


The facile replacement of the halogen substituent in the nitro-substituted haloimidazoles prompted many laboratories [12-18] to develop new high-yield syntheses leading to interesting imidazole compounds bearing various alkylsulfanyl or alkylamino groups *via* nucleophilic substitution of the halogen by N or S nucleophiles. With the potential biological activity in mind, we synthesized new substituted 4-nitroimidazoles and evaluated their HIV activity.

Results

Our recent work [19,20] has focused on the substitution of the bromo group of 5-bromo-1-benzyl-2-ethyl-4-nitroimidazole **4** [18] by various primary and secondary amines as well as by alkylsulfanyl precursors [13] to furnish potentially active analogues. In the present work, compound **4** has been selected as start-

0932-0776 / 06 / 0400-0523 \$ 06.00 © 2006 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com


ing material for the synthesis of new substituted imidazole compounds *via* the nucleophilic displacement of the bromine group activated by an adjacent nitro function. Treatment of **4** with piperazine in DMF afforded **5** (72%), which gave **8** and **9** in 34 and 31% yield, respectively, on reaction with 2-chlorobenzoxazole (**6**) and 2-chlorobenzothiazole (**7**), respectively, in the presence of NaH/DMF.

On the other hand, treatment of **5** with the 4-(1,2,4-triazol-3-yl)benzyl chloride derivatives [21] **10** and **11** afforded, after purification, compounds **12** and **13** in 64 and 38 % yield, respectively.

Treatment of **4** with piperazine-1-carbaldehyde in DMF afforded after chromatographic purification compound **14** (87%) (Scheme 1).

The structures of **5** and **8–14** were identified by heteronuclear NMR spectroscopic methods including HMBC spectra [22] and mass spectra. The ¹H NMR spectra of **5**, **8**, **9** and **12–14** showed rather similar patterns. The resonances of the piperazine moiety appeared as two broad singlets at $\delta = 3.89-2.65$ and $\delta = 3.51-2.56$, the signal of the benzylic protons at $\delta = 5.24-5.16$. The aldehyde proton of **14** gave a singlet at $\delta = 8.67$. The ¹³C NMR spectra of **8** and **9** contained high-field signals at $\delta = 160.8$ and 167.9 which were attributed to C-10 of the oxazole and thiazole rings, respectively. Carbon atom C-2 of the imidazole ring resonated at $\delta = 140.0$. The piperazine carbon atoms were identified at $\delta = 48.4$ and 46.4. Carbon atoms C-4 and C-5 of the imidazole ring gave signals at $\delta = 137.7$ and 135.4. The ¹³C NMR spectra of **12** and **13** were similar to those of the analogues **8** and **9**. The carbon atoms of the triazole ring were assigned to the signals at $\delta = 159.5$ and 152.3 for **8** and $\delta = 152.2$ and 145.1 for **9**.

Next, our efforts have been focused on the *N*-alkylation of 2-methyl-4-nitroimidazole (**15**) by introduction of potential alkyl groups. Thus, treatment of **15** with **6** or **7** and NaH in DMF afforded, after purification, compounds **16** and **17** in 41 and 46% yield, respectively. A similar treatment of **15** with the benzylic chlorides **10**, **11** or **18** gave N^1 -benzylimidazoles **19–21** in 27, 38 and 40% yield, respectively (Scheme 2). The constitution of **16**, **17** and **19–21** was derived from their NMR (¹H, ¹³C) and mass spectra. The HMBC spectrum of **21** showed ²*J*_{C,H} coupling be-

Scheme 2.

tween C-4 of the imidazole ring ($\delta = 136.4$) and 5-H ($\delta = 8.46$). ${}^{3}J_{C,H}$ coupling was observed between C-4 and the methylene protons (CH₂Ph) ($\delta = 5.32$). ${}^{2}J_{C,H}$ coupling was found between C-2' of the triazole ring ($\delta = 58.5$) and 9'-H₂ ($\delta = 2.94$), and ${}^{3}J_{C,H}$ coupling between C-2' and 8'-H₂ ($\delta = 1.74$).

In vitro anti-HIV assay

Compounds 8, 9, 12–14, 16, 17 and 19–21 were tested for their *in vitro anti*-HIV-1 (strain III_B) and HIV-2 (strain ROD) activity in human T-lymphocyte (MT-4) cells. The results are summarized in Table 1, in which the data for efavirenz [23] and capravirine [11] are included for comparison purposes. Compound 21 was found to be the only compound in the series inhibiting HIV-1 replication in cell culture. Compound 21 showed an EC_{50} of 0.20 μ g/mL and a CC_{50} of 2.40 μ g/mL, resulting in a selectivity index of 12.

Based on the chemical structure and the fact that compound **21** inhibits HIV-1, but not HIV-2 replication, this molecule can be proposed to act as an nonnucleoside reverse transcriptase inhibitor (NNRTI). This hypothesis was further confirmed by assaying the compound against a typical NNRTI-resistant HIV-1 strain (double mutation in RT: K103N and Y181C). Compound **21** completely lost its inhibitory activity against this resistant strain.

Experimental Section

Melting points were measured on a Büchi melting point apparatus B-545 (BÜCHI Labortechnik AG, Switzerland)

Table 1. *In vitro anti*-HIV-1^a and HIV-2^b of some new nitroimidazoles.

Compound	Virus strain	$EC_{50}~(\mu g/ml)^c$		SI ^e
8	III _B	> 14.9	16.48 ± 1.32	< 1
	ROD	> 16.2	16.48 ± 1.32	< 1
9	III _B	> 15.9	17.18 ± 1.15	< 1
	ROD	> 16.6	17.18 ± 1.15	< 1
12	III _B	> 15.0	16.75 ± 1.75	< 1
	ROD	> 15.2	16.75 ± 1.75	< 1
13	III _B	> 14.3	15.78 ± 1.09	< 1
	ROD	> 15.6	97.05 ± 13.97	< 1
14	III _B	> 85.1	97.05 ± 13.97	< 1
	ROD	> 117.0	117.0 ± 4.2	< 1
16	III _B	> 28.8	46.88 ± 19.95	< 1
	ROD	> 22.4	46.88 ± 19.95	< 1
17	III _B	> 96.1	\geq 96.1	< 1
	ROD	> 101.0	\geq 96.1	< 1
19	III _B	> 102.0	≥ 102.0	< 1
	ROD	> 118.0	≥ 102.0	< 1
20	III _B	> 14.2	14.8 ± 0.50	< 1
	ROD	> 14.6	14.8 ± 0.50	< 1
21	III _B	0.20 ± 0.08	2.4 ± 0.1	12
	ROD	> 2.9	2.8 ± 0.1	< 1
Efavirenz [23]	III _B	0.003	40	13333
Capravirine [11]	III _B	0.0014	11	7857

^a anti-HIV-1 activity measured with strain III_B, ^b anti-HIV-2 activity measured with strain ROD, ^c compound concentration required to achieve 50 % protection of MT-4 cells from the HIV-1- and -2-induced cytopathogenic effect, ^d compound concentration that reduces the viability of mock-infected MT-4 cells by 50 %, ^e SI: selectivity index (CC_{50}/EC_{50}).

without correction. ¹H and ¹³C NMR spectra were measured on a UltraShield TM NMR-300 MHz Bruker instrument with TMS as internal standard and on the δ scale in ppm. Microanalytical data were obtained with a Vario Elementar apparatus. EI and FAB mass spectra were measured on a GC-MS Shimadzu QP-505A (Japan) spectrometer.

1-(1-Benzyl-2-ethyl-4-nitro-1H-imidazol-5-yl)piperazine (5)

A solution of **4** (3.10 g, 10.0 mmol) in DMF (25 mL) and piperazine (1.03 g, 12.0 mmol) was stirred at 70–80 °C for 6 h. After cooling the precipitation was filtered and recrystallized from EtOH to give **5** (2.27 g, 72%). M. p. 228– 231 °C. – ¹H NMR (250 MHz, CDCl₃): δ = 7.38–7.18 (m, 5H, ArH), 6.75 (br s, 1H, NH), 5.22 (s, 2H, CH₂Ph), 3.09, 2.98 (2xbr s, 8H, piperazine), 2.56 (q, 2H, *J* = 7.5 Hz, CH₂CH₃), 1.09 (t, 3H, CH₂CH₃). – ¹³C NMR (62.9 MHz, CDCl₃): δ = 145.7 (C-2), 139.4 (C-4); 137.0 (C-5), 129.6, 128.3, 127.0 (ar.), 46.6, 43.8 (4 C, piperazine), 41.0 (CH₂Ph), 20.9 (CH₂CH₃), 11.3 (CH₂CH₃). – MS (EI, 70 eV): *m/z* (%) = 315 (78) [M⁺]. – C₁₆H₂₁N₅O₂ (315.37): calcd. C 60.94, H 6.71, N 22.21; found C 60.75, H 6.59, N 22.03.

2-[4-(1-Benzyl-2-ethyl-4-nitro-1H-imidazol-5-yl)piperazin-1-yl]benzoxazole (8)

To a solution of 5 (0.32 g, 1.0 mmol) in DMF (15 mL) containing NaH (1.0 mmol) was added a solution of 6 (0.15 g, 1.0 mmol) in DMF (5 mL) and the mixture was stirred at 23 °C for 48 h. The solvent was evaporated and the residue brought to dryness and partitioned between CH₂Cl₂ (40 mL) and water (40 mL). The organic phase was dried (Na₂SO₄), filtered and evaporated to dryness and the residue was purified by chromatography (10 g), using CH₂Cl₂-MeOH (9:1) as eluent to give 8 (0.15 g, 34 %). M. p. 145-147 °C. – ¹H NMR (250 MHz, CDCl₃): $\delta = 7.42 - 7.07$ (m, 9H, ArH), 5.17 (s, 2H, CH2Ph), 3.91, 3.50 (2xbr s, 8H, piperazine), 2.68 (q, 2H, J = 7.0 Hz, CH₂CH₃), 1.33 (t, 3H, CH₂CH₃). – ¹³C NMR (62.9 MHz, CDCl₃): δ = 160.8 (C-10), 148.2 (C-12, Ar-C), 145.3 (C-13, Ar-C), 140.0 (C-2), 137.7 (C-4), 135.4 (C-5), 129.2 - 109.2 (9 C, ar.), 48.7, 46.4 (4 C, piperazine), 45.2 (CH₂Ph), 21.1 (CH₂CH₃), 11.4 (CH_2CH_3) . – MS (EI, 70 eV): m/z (%) = 432 (59) [M⁺]. - C₂₃H₂₄N₆O₃ (432.48): calcd. C 63.88, H 5.59, N 19.43; found C 63.57, H 5.46, N 19.21.

2-[4-(1-Benzyl-2-ethyl-4-nitro-1H-imidazol-5-yl)piperazin-1-yl]benzothiazole (9)

This compound was prepared from **5** (0.32, 1.0 mmol) and **7** (0.17 g, 1.0 mmol), by following the same procedure as for the preparation **8**. Yield: 0.14 g (31%). M. p. 123–125 °C. – ¹H NMR (CDCl₃): δ = 7.75–7.00 (m, 9H, ArH), 5.18 (s, 2H, *CH*₂Ph), 3.89, 3.51 (2xbr s, 8H, piperazine), 2.68 (q, 2H, *J* = 7.0 Hz, *CH*₂CH₃), 1.31 (t, 3H, *CH*₂*CH*₃). – ¹³C NMR (62.9 MHz, CDCl₃): δ = 167.9 (C-10), 145.4 (C-12, Ar-C), 145.1 (C-13, Ar-C), 140.0 (C-2), 137.4 (C-4), 135.4 (C-5), 135.3, 129.4–118.1 (ar.), 125.6 (C-12), 48.4, 46.4 (4 C, piperazine), 32.0 (*CH*₂Ph), 21.1 (*CH*₂CH₃), 11.4 (*CH*₂*CH*₃). – MS (EI, 70 eV): *m/z* (%) = 484 (88) [M⁺]. – C₂₃H₂₄N₆O₂S (448.54): calcd. C 61.59, H 5.39, N 18.74; found C 63.37, H 5.46, N 19.21.

1-[4-(1-Ethyl-5-methyl-1H-1,2,4-triazol-3-yl)benzyl-4-1-benzyl-2-ethyl-4-nitro-1H-imidazol-5-yl]piperazine (12)

This compound was prepared from 5 (0.32, 1.0 mmol) and 10 (0.24 g, 1.0 mmol), analogously to the preparation of 8. Yield: 0.33 g (64 %). M. p. 152-154 °C. - ¹H NMR (250 MHz, CDCl₃): $\delta = 7.36 - 7.01$ (m, 9H, ArH), 5.16, 5.01 (2xs, 4H, 2xCH₂Ph), 3.20, 2.56 (2xbr s, 8H, piperazine), 4.16, 2.65 (2xq, J = 7.3 Hz, 2xCH₂CH₃), 2.68 (q, 2H, J = 7.0 Hz, CH_2CH_3), 1.31 (t, 3H, CH_2CH_3). – ¹³C NMR $(62.9 \text{ MHz}, \text{CDCl}_3): \delta = 159.5 \text{ (C-3', triazole)}, 152.3 \text{ (C-5',}$ triazole), 140.2 (C-2, imidazole), 138.9 (C-4, imidazole), 135.4 (2xC, Ar), 132.6 (C-5, imidazole), 130.0-125.6 (10 C, ar.), 48.4, 46.4 (4C, piperazine), 32.0 (CH₂Ph), 49.2, 48.6 (4 C, piperazine), 46.4, 40.2 (2xCH₂Ph), 43.5 (CH₂CH₃, triazole), 20.1 (CH₂CH₃, imidazole), 13.8, 13.6 (2xCH₂CH₃), 11.8 (C₅-Me). – MS (EI, 70 eV): m/z (%) = 514 (85) [M⁺]. - C₂₈H₃₄N₈O₂ (514.62): calcd. C 65.35, H 6.66, N, 21.77; found C 65.07, H 6.49, N 21.53.

2-[4-((4-(1-Benzyl-2-ethyl-4-nitro-1H-imidazol-5-yl)piperazin-1-yl)methyl)phenyl]-5,6,7,8-tetrahydro[1,2,4]-triazolo-[1,5-a]pyridine (13)

This compound was prepared from 5 (0.32, 1.0 mmol) and 11 (0.25 g, 1.0 mmol), by following the same procedure as for 8. Yield: 0.20 g (38%). M.p. 148-150 °C. ⁻¹H NMR (250 MHz, CDCl₃): $\delta = 8.20$, 7.52 (2xd, 4H, J = 5.0 Hz, ArH), 7.38–7.04 (m, 5H, ArH), 5.16, 4.29 (2xs, 4H, 2xCH₂Ph), 4.29 (m, 2H, 5'-H₂, triazole), 3.24 (br s, 4H, piperazine), 2.65 (br s, 8H, 9'-H₂, triazole + piperazine + CH₂CH₃), 2.22 (m, 2H, 6'-H₂, triazole), 2.09 (m, 2H, 8'-H₂, triazole), 1.35 (m, 2H, 7'-H₂, triazole), 1.30 (t, 3H, J = 7.2 Hz, CH₂CH₃). – ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 152.2$ (C-2', triazole), 145.1 (C-10', triazole), 140.8 (C-2, imidazole), 138.9 (C-4, imidazole), 135.4 (2 C, ar.), 131.0.6 (C-5, imidazole), 130.9-125.7 (10C, ar.), 49.2, 47.9 (4C, piperazine), 45.5 (C-5', triazole), 46.4, 41.0 (2xCH2Ph), 29.7 (C-7', triazole), 23.0 (C-9', triazole), 22.1 (C-8'), 21.1 (C-6', triazole), 18.7 (CH₂CH₃, imidazole), 11.4 (CH₂CH₃). - MS (EI, 70 eV): m/z (%) = 526 (85) [M⁺]. - C₂₉H₃₄N₈O₂ (526.63): calcd. C 66.14, H 6.51, N 21.28; found C 65.84, H 6.47, N 21.11.

4-(1-Benzyl-2-ethyl-4-nitro-1H-imidazol-5-yl)piperazin-1-carbaldehyde (14)

A solution of **5** (0.34 g, 3.0 mmol) in DMF (30 mL) containing piperazine-1-carbaldehyde (0.93 g, 3.0 mmol) was heated at 70–80 °C for 6 h. After cooling overnight, the crystals were collected to give **14** (0.89 g, 87 %). M. p. 297– 299 °C. – ¹H NMR (250 MHz, CDCl₃): δ = 8.67 (s, 1H, CHO), 7.41–7.03 (m, 5H, ArH), 5.24, (s, 2H, CH₂Ph), 3.33, 3.07 (2xbr s, 8H, piperazine), 2.53 (q, J = 7.2 Hz, CH_2CH_3), 1.14 (t, 3H, CH_2CH_3). – ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 160.9$ (CHO), 145.2 (C-2), 137.9 (C-4), 135.4 (C-5), 129.3, 128.4, 127.1, 123.7 (ar.), 49.6, 48.7, 46.3, 45.7 (4 C, piperazine), 40.2 (CH₂Ph), 21.1 (CH₂CH₃), 11.4 (CH₂CH₃). – MS (EI, 70 eV): m/z (%) = 343 (75) [M⁺]. – $C_{17}H_{21}N_5O_3(343.38)$: calcd. C 59.46, H 6.16, N 20.40; found C 59.15, H, 6.08, N 12.75.

2-(2-Methyl-4-nitro-1H-imidazol-1-yl)benzoxazole (16)

To a solution of **15** (0.13 g, 1.0 mmol) in DMF (15 mL) containing NaH (1.0 mmol) was added a solution of **6** (0.15 g, 1.0 mmol) in DMF (5 mL) and the mixture was stirred at 120–130 °C for 12 h. After cooling, the reaction mixture was worked up as described for **8**. Yield: 0.10 g (41 %). M. p. 182–184 °C. – ¹H NMR (250 MHz, CDCl₃): $\delta = 8.92$ (s, 1H, 5-H), 7.87–7.83 (m, 3H, ArH), 7.51–7.48 (m, 2H, ArH), 2.79 (s, 3H, 2-CH₃). – ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 151.5$ (C-2'), 149.1 (C-3a'), 146.8 (C-2), 146.5 (C-7a'), 140.3 (C-4), 126.2 (C-5), 126.2, 120.4, 120.2, 111.6 (ar.), 16.1 (2-CH₃). – MS (EI, 70 eV): m/z (%) = 241 (68) [M⁺]. – C₁₁H₈N₄O₃ (244.21): calcd. C 54.10, H 3.30, N 22.94; found C 53.93, H 3.18, N 22.67.

2-(2-Methyl-4-nitro-1H-imidazol-1-yl)benzothiazole (17)

This compound was prepared from **15** (0.13 g, 1.0 mmol) and **7** (0.17 g, 1.0 mmol), by following the same procedure as for **16**. Yield: 0.12 g (46 %). M. p. 220–222 °C. – ¹H NMR (250 MHz, CDCl₃): δ = 8.26 (s, 1H, 5-H), 8.26–8.09 (m, 3H, ArH), 7.65–7.53 (m, 2H, ArH), 2.71 (s, 3H, 2-CH₃). – ¹³C NMR (62.9 MHz, CDCl₃): δ = 156.1 (C-2'), 149.9 (C-7a'), 146.0 (C-3a'), 146.0 (C-2), 134.2 (C-4), 127.8 (C-5), 126.9, 123.5, 123.2, 121.8 (ar.), 15.8 (2-CH₃). – MS: *m/z* = 260 (M⁺). – C₁₁H₈N₄O₂S (260.27): calcd. C 50.76, H 3.10, N 21.53; found C 50.54, H 2.98, N 21.42.

1-Ethyl-5-methyl-3-[((2-methyl-4-nitro-1H-imidazol-1-yl)methyl)phenyl]-1H-1,2,4-triazole (19)

This compound was prepared from **15** (0.13 g, 1.0 mmol) and **10** (0.24 g, 1.0 mmol), by following the same procedure as for **8**. Yield: 0.09 g (27%). M. p. 166–168 °C. – ¹H NMR (250 MHz, CDCl₃): δ = 8.46 (s, 1H, 5-H), 7.96 (d, 2H, *J* = 8.0 Hz, ArH), 7.32 (d, 2H, *J* = 8.0 Hz, ArH), 5.33 (s, 2H, CH₂Ph), 4.15 (q, 2H, *J* = 7.4 Hz, CH₂CH₃), 2.44 (s, 3H, 2-Me, imidazole), 2.29 (s, 3H, 5'-Me, triazole), 1.36 (t, 3H, CH₂CH₃). – ¹³C NMR (62.9 MHz, CDCl₃): δ = 159.2 (C-3', triazole), 153.0 (C-5', triazole), 145.6 (C-2, imidazole), 136.5 (C-4, imidazole), 136.4 (C-Ar); 131.5 (C-5, imidazole), 128.1, 126.4, 123.1 (5xC-Ar), 49.9 (CH₂Ph), 43.2 (CH₂CH₃), 15.3 (CH₂CH₃),

5,6,7,8-Tetrahydro-2-[4-((2-methyl-4-nitro-1H-imidazol-1-yl-)methyl)phenyl]-[1,2,4]-triazolo[1,5-a]pyridine (20)

This compound was prepared from 15 (0.13 g, 1.0 mmol) and 11 (0.25 g, 1.0 mmol), by following the same procedure as for 8. Yield: 0.13 g (38%). M. p. 148-150 °C. -¹H NMR (250 MHz, CDCl₃): $\delta = 8.16$ (d, 2H, J = 8.2, ArH), 7.71 (s, 1H, 5-H), 7.22 (d, 2H, J = 8.2, ArH), 7.32 (d, 2H, J = 8.2 Hz, ArH), 5.15 (s, 2H, CH₂Ph), 4.25 (m, 2H, 5'-H₂-triazole), 3.06 (m, 8'-H₂, triazole), 2.41 (s, 3H, 2-Me, imidazole), 2.07 (m, 2H, 7'-H2, triazole), 2.03 (m, 2H, 6'-H₂, triazole). – ¹³C NMR (62.9 MHz, CDCl₃): δ = 160.1 (C-2', triazole), 158.0 (C-9', triazole), 145.0 (C-2, imidazole), 138.0 (C-4, imidazole), 136.1 (C-Ar), 131.2 (C-5, imidazole), 127.6, 120.0 (5 C-Ar), 50.7 (CH₂Ph), 47.5 (5'-CH₂-5', triazole), 29.7 (CH₂-8', triazole), 22.9 (CH₂-7', triazole), 19.7 (CH₂-6', triazole), 13.3 (5'-Me, triazole). -MS (EI, 70 eV): m/z (%) = 338 (85) [M⁺]. - C₁₇H₁₈N₆O₂ (338.36): calcd. C 60.34, H 5.36, N 24.84; found C 60.16, H 5.19, N 24.49.

6,7,8,9-Tetrahydro-2-[4-((2-methyl-4-nitro-1H-imidazol-1yl-)methyl)phenyl]-5H-[1,2,4]-triazolo[1,5-a]azepine (21)

This compound was prepared from 15 (0.13 g, 1.0 mmol) and 18 (0.13 g, 1.0 mmol), by following the same procedure as for 8. Yield: 0.14 g, (40 %). M. p. 208 – 210 °C. – ¹H NMR (600 MHz, HMBC, CDCl₃): $\delta = 8.46$ (s, 1H, H-5), 7.95 (d, 2H, J = 8.1 Hz, ArH), 7.31 (d, 2H, J = 8.1 Hz, ArH), 5.32 (s, 2H, CH₂Ph), 4.28 (m, 2H, 5'-H₂-triazole), 2.94 (m, 2H, 9'-H₂, triazole), 2.28 (s, 3H, 2-Me, imidazole), 1.84 (m, 2H, 6'-H₂, triazole), 1.74 (m, 2H, 8'-H₂, triazole), 1.64 (m, 2H, 7'-H₂, triazole). - ¹³C NMR (150.0 MHz, CDCl₃): $\delta = 158.5$ (C-2', triazole), 158.1 (C-10', triazole), 145.6 (C-2, imidazole), 136.4 (C-4, imidazole), 133.3 (C-Ar), 131.5 (C-5, imidazole), 128.2, 126.4, 123.0 (5 C-Ar), 51.0 (C-10', triazole), 50.0 (CH₂Ph), 47.5 (CH₂-5', triazole), 29.9 (CH₂-7', triazole), 27.6 (CH₂-9', triazole), 27.0 (CH₂-8', triazole), 25.0 (CH₂-6', triazole), 13.3 (5'-Me, triazole). -MS (EI, 70 eV): m/z (%) = 352 (70) [M⁺]. - C₁₈H₂₀N₆O₂ (352.39): calcd. C 61.35; H 5.72; N 23.85; found C 61.08, H 5.63, N 23.57.

Acknowledgements

Dr. Al-Soud would like to thank DAAD, Germany, for supporting this project. Mr. Muhannad Musad of Al al-Bayt University, Jordan, is greatfully acknowledged for the NMR measurements.

- E. Winkelmann, W. Raether, A. Sinharay, Arzneim.-Forsch./Drug Res. 1978, 28, 351.
- [2] M. R. Grimmett, in *Comprehensive Heterocyclic Chemistry*, Vol. 4, (Eds.: A. R. Katritzky, C. W. Rees), Pergamon Press, Oxford, **1984**, p. 498.
- [3] G.E. Adams, E.D. Clarke, I.R. Flockhart, R.S. Jacobs, D.S. Sehmi, I.J. Stratford, P. Wardman, M.E. Watts, J. Parrick, R. G. Wallace, C. E. Smithen, *Int. J. Radiat. Biol.* **1979**, *35*, 133.
- [4] J. Morgenstern, R. Otto, S. Scheithaner, Germ. (East) DD 260,062; *Chem. Abstr.* **1989**, *110*, 231634r.
- [5] A. Breccia, R. Cavalleri in *Nitroimidizoles: Chemistry, Pharmacology and Clinical Application*, Vol. 42 (Ed.: G. E. Adams), Plenum Press, New York, **1982**.
- [6] J. L. Skibba, D. D. Beal, K. K. Whitnable, *Cancer Res.* 1970, 30, 147.
- [7] J. E. Biskupiak, J. R. Grierson, J. S. Rasey, G. V. Martin, K. A. Krohn, J. Med. Chem. 1991, 34, 2165.
- [8] J. Bartroli, M. Alguero, E. Boncompte, J. Forn, Arzneim.-Forsch. 1992, 42, 832.
- [9] I. Saji, K. Tamoto, H. Yamazaki, H. Aqui, *Heterocycles* 1981, 15, 943.
- [10] C. Cosar, L. Julou, Ann. Inst. Pasteur Paris 1959, 96, 238.
- [11] T. Fujiwara, A. Sato, M. El-Farrash, S. Miki, K. Kabe, Y. Isaka, M. Kodama, Y. M. Wu, L. B. Chen, H. Harada, H. Sugimoto, M. Hatanaka, Y. Hinuma, *Antimicrob. Agents Chemother.* **1998**, *42*, 1340.
- [12] P.M. Kochergin, L.A. Reznichenko, R.N. Girava,

E. V. Aleksandrova, *Chem. Heterocycl. Compd.* **1998**, 34, 1142.

- [13] S. Kulkarni, M. R. Grimmett, L. R. Hanton, J. Simpson, *Aust. J. Chem.* **1987**, 40, 1399.
- [14] A. K. S. B. Rao, C. G. Rao, B. B. Sigh, Synth. Commun. 1994, 24, 341.
- [15] I. Wolska, T. Borowiak, S. Sobiak, Pol. J. Chem. 1994, 68, 1831.
- [16] S. Sobiak, Pol. J. Chem. 1998, 72, 78.
- [17] L. Zaprutko, M. Gajdzinski, W. Michalska, K. Pit Kilwicz, K. Lutomski, Z. Lukaszewski, U. Wrzeciono, *Pharmazie* **1989**, 44, 817.
- [18] A. K. S. B. Rao, C. G. Rao, B. B. Singh, J. Org. Chem. 1992, 57, 3240.
- [19] N. A. Al-Masoudi, Y. A. Al-Soud, A. Kalogerakis, E. De Clercq, C. Paneccoque, *Chem. Biodiver.* 2006, 3, 515.
- [20] Y.A. Al-Soud, N.A. Al-Masoudi, Synth. Commun. 2005, 35, 2258.
- [21] Y. A. Al-Soud, R. F. Hala, N. A. Al-Masoudi, *OPPI* 2002, 34, 658.
- [22] W. Willker, D. Leibfritz, W. Kerssbaum, W. Bermel, Mag. Reson. Chem. 1993, 31, 287.
- [23] S. D. Young, S. F. Britcher, L. O. Tran, L. S. Payne, W. C. Lumma, T. A. Lyle, J. R. Huff, P. S. Anderson, D. B. Olsen, S. S. Carroll, D. J. Pettibone, J. A. Obrien, R. G. Ball, S. K. Balani, J. H. Lin, I. W. Chen, W. A. Schleif, V. V. Sardana, W. J. Long, V. W. Byrnes, E. A. Emini, *Antimicrob. Agents Chemother.* **1995**, *39*, 2602.