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Noting that current chemical theory is based almost exclusively on electronic energy and spin
variables the equal importance of orbital angular momentum is explored in this paper. From its clas-
sical definition the angular momentum of electrons in an atom is shown to obey Laplace’s equation,
which automatically leads to discrete values in terms of spherical harmonics. This analysis assumes
a continuous distribution of electronic charge, which resembles a fluid at equilibrium. It serves to
elucidate the success and failure of Bohr’s conjecture and the origin of wave-particle duality. Applied
to atoms, minimization of orbital angular momentum leads to Hund’s rules. The orientation of angu-
lar momenta in lower-symmetry molecular environments follows from the well-known Jahn-Teller
theorem.
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Introduction

Study of the physical world is made possible by the
recognition of several fundamental symmetries. Ac-
cording to Noether’s theorem each symmetry leads to
the recognition of a conservation law [1]. In dynamical
systems conservation of mass, energy, momentum and
angular momentum derive from the assumed homo-
geneity and isotropy of space-time. Together with the
conservation of electronic charge, which arises from
the internal symmetry of the electromagnetic field, all
of these conservation laws are of basic importance in
the theoretical understanding of chemistry.

The conservation laws of mass and energy are the
cornerstones of the theories of chemical composition
and thermodynamics. The kinetic theory of gases re-
lies on the conservation of linear momentum and the
conservation of electronic charge underpins all mod-
els of chemical transformation. In contrast, the con-
servation of angular momentum is largely ignored,
except by reference to electron spin, which is only
one quantum-mechanical aspect of the total angular
momentum of an electron. This omission leaves an
unbridgeable gap in the theory of molecular struc-
ture and conformation, which has been a source of
endless frustration for almost a century. The reason
for this state of affairs can be traced to the uncrit-
ical embrace of an unreasonable model of directed
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chemical bonding that gained universal recognition in
chemistry.

Angular Momentum

Angular momentum in classical mechanics is a vec-
tor quantity that describes rotational motion and must
be of obvious importance for the understanding of
electronic motion in atoms and molecules. The angular
momentum vector that quantifies circular rotation of a
particle about an axis is defined as the moment of the
linear momentum, LLL = rrr××× ppp, i. e. the vector product of
the linear momentum and the radius vector from the
point of rotation. It is directed along the axis of rota-
tion, perpendicular to the plane of rotation, and is pos-
itive in the direction that drives a right-handed screw
(Fig. 1).

Fig. 1. Definition of the angular
momentum vector.
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The classical angular momentum vector decom-
poses into cartesian components. From the definition
of

LLL = rrr××× ppp =

∣∣∣∣∣∣
iii jjj kkk
x y z
px py pz

∣∣∣∣∣∣ = rprprpsinα (1)

simple vector algebra [2] defines the components of LLL
as

Lx = ypz − zpy, (2)

Ly = zpx − xpz, (3)

Lz = xpy − ypx (4)

and

LLL ···LLL = L2 = L2
x + L2

y + L2
z . (5)

The moment of the force, or torque associated with
temporal change of angular momentum, NNN = ∂L/∂t, is
also defined as a vector product, NNN = rrr × (dppp/dt), in
the same way as the angular momentum.

On analyzing the angular momenta of electrons in
an atom another important factor comes into play. With
the total positive charge concentrated at the point-like
nucleus the electron density is considered to be in a
central Coulomb field with rotation about a fixed point
rather than an axis. In the absence of external torque,
e. g. a magnetic field, the electronic charge on an atom
constitutes a stable mechanical system. With all forces
and torques in balance the angular momentum L there-
fore satisfies an equation like that of Laplace. Allowed
rotational modes appear as the solutions to the angular-
dependent part of the equation, the precise details of
which depend on the assumed nature of the extranu-
clear electrons.

The Bohr conjecture

The most advanced model, that of quantum field the-
ory, defines the electron as a zero-dimensional point
particle. Its properties of mass, charge and spin are
considered to be of mathematical significance only. Ef-
forts to form a physical picture of the electrons are con-
sidered meaningless. Nevertheless, the first successful
account of atomic structure was based on such a parti-
cle model and Bohr’s conjecture that the angular mo-
mentum of an orbiting electron is quantized in units
of h̄.

The mystery of Bohr’s conjecture and the calcula-
tion of Rydberg’s constant, based on this conjecture,
has never been resolved satisfactorily. The mystery
consists therein that the quantum number (n), which
quantifies the angular momentum

mvr = nh̄ (6)

is combined with the Coulomb potential V = eφ =
−e2/4πε0r to yield the total energy

E = −Ry
n2 (7)

of the hydrogen ground-state electron in rydberg units.
In reality however, the ground state requires values
of n = 0 and n = 1 in eq. (6) and (7) respectively. The
confusion arises from the fact that the quantum num-
ber of eq. (6) is the azimuthal quantum number ml ,
whereas n of eq. (7) is the principal quantum number,
and both of these are integers. The wrong assumption
is that (6) refers to the hydrogen ground state. In fact,
it simply defines the smallest unit of non-zero orbital
angular momentum, h̄ = mvr/ml, as equivalent to the
angular momentum of a point particle of mass m and
linear velocity v, in a circular orbit of radius r, about
a fixed point. The energy of such a hypothetical point
particle on a stable orbit defines the corresponding ryd-
berg unit of energy,

Ry =
me4

8ε2
0 h2 =

me4

2(4πε0)2h̄2 .

The Bohr model introduced the enduring concept of
stationary quantum states and first defined fundamental
concepts such as the bohr magneton, µB = eh̄/2mc and
the fine-structure constant, α = v1/c = e2/h̄c � 1/137,
still in common use. However, inability to extend the
description to more complex atoms made it unaccept-
able as a chemical model. The unphysical definition
of the stationary state in terms of an accelerated elec-
tron that fails to radiate, remained the major objection
against the model.

Although this major problem could not be resolved
Sommerfeld [3] extended the Bohr treatment to give
reasonable accounts of atomic structure in general, the
formation of chemical bonds and the periodic table of
the elements. This was achieved by the introduction
of elliptic orbits in line with Kepler’s laws of plane-
tary motion and widening of Bohr’s conjecture by the
formulation of quantum rules for periodic systems in
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Fig. 2. Sommerfeld model of the
neon atom in terms of four elliptic
and four circular orbits, both types
in tetrahedral array.

terms of action integrals such as
∮

pkdqk = nkh, k =
1,2, .., n = integer, where q and p are generalized coor-
dinates and their canonically conjugate momenta. Use
of these rules enabled the assignment of electronic, vi-
brational and rotational molecular spectra and predicts
Bragg’s law for the interpretation of diffraction phe-
nomena.

Success of the Sommerfeld model was due to the
introduction of two additional quantum numbers, re-
quired to describe elliptic orbits. The scheme is illus-
trated by the electronic structure that it proposed for
the neon atom. Ten electrons, as shown in Fig. 2, are
distributed over two shells, or energy levels, on sets
of two and eight orbits respectively. The inner shell
accommodates two electrons1 while the second shell
consists of four elliptic and four circular orbits, ar-
ranged in space, such that the total electronic angular
momentum is quenched.

Quenching is achieved by directing the angular mo-
mentum vectors of the electrons on elliptic orbits to-
wards the corners of a regular tetrahedron. Angular
momentum vectors of the electrons on circular orbits
are in turn directed to tetrahedral sites which com-
plete the cube that also contains the corners of the
first tetrahedron. For the carbon atom only the four
equivalent elliptic orbits in tetrahedral array are oc-
cupied. By analogy with the Lewis-Langmuir model
of electron-pair bonds, this predicted arrangement was
argued with great effect, to account for the structure
of aliphatic compounds. This proposition has turned
out to be the most persistent legacy of the Sommerfeld
model, although the sound principle of quenched angu-
lar momentum on which it was based, has been aban-
doned in modern theories of chemical bonding. The

1 The helium problem remained unsolved in the
Sommerfeld scheme as quenching of the angular momentum of two
electrons, both with quantum number n = 1 and together on the same
circular orbit (Lz = ±h̄), requires them to orbit in opposite sense
on a collision course. A tentative solution pictures the electrons as
moving in phase on elliptic orbits with Lz = ±h̄/2, as shown in the
diagram. This model, however crude, anticipated the description of
two s-electrons with paired spins.

idea of defining tetrahedral orbitals by hybridization is
an obvious attempt to emulate the attractive Sommer-
feld construct, albeit at the expense of the fundamental
principle of angular momentum conservation.

The need to introduce half-integer quantum num-
bers can now be seen to have arisen from inappropriate
use of Bohr’s conjecture, assuming non-zero angular
momentum for electrons in s-states. This dilemma sig-
nalled the ultimate failure of Sommerfeld’s model.

The unsuccessful Bohr-Sommerfeld model was
based on the assumption that an orbiting particle pro-
vided the only possible source of electronic orbital an-
gular momentum in an atom. A valid alternative is de-
fined by a hydrodynamic model that pictures the elec-
tron as an ideal compressible fluid that surrounds the
nucleus. At equilibrium, in a stationary state, the fluid
appears incompressible, in accord with one of the pi-
oneering interpretations [4] of the Schrödinger func-
tion, which has never been fully appreciated. In this
model angular momentum derives from the hydrody-
namic circulation, or vorticity, of the fluid, which is
subject to the central Coulombic attraction [5] and be-
comes observable in an applied magnetic field. The
components of vorticity, at equilibrium, are defined in
terms of the components of flux, u, v, w as:

ξ =
∂w
∂y

− ∂v
∂z

, η =
∂u
∂z

− ∂w
∂x

, ζ =
∂v
∂x

− ∂u
∂y

. (8)

For an electron of mass me the relationship between
vorticity and angular momentum follows from (2) as∫

ξ ·dr(x,y,z) = Lx/me, etc.
The continuity equation

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0

through (8), implies the Helmholtz relation

∂ξ
∂x

+
∂η
∂y

+
∂ζ
∂z

= 0

and hence2 a circulation potential ρ , which cor-
responds to an angular momentum that satisfies
Laplace’s equation.

Laplace’s equation

Laplace’s equation, in cartesian coordinates, reads

2V =
∂2V
∂x2 +

∂2V
∂y2 +

∂2V
∂z2 = 0. (9)

2Note that ∂ρ/∂x = ξ , etc.
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It describes the situation in which the potential has
the least mean gradient. For instance, the condition
d2y/dx2 = 0 requires only that the curve described by
the moving point shall have zero curvature, i. e. y =
mx + c, a straight line. The equation may be solved by
separation of the variables under the assumption that
the potential may be written as a product function

V = X(x) ·Y(y) ·Z(z) (10)

in which X , Y and Z are functions of only one inde-
pendent variable. On substitution of (10) into (9) and
division by V , the equation becomes

1
X

d2X
dx2 +

1
Y

d2Y
dy2 +

1
Z

d2Z
dz2 = 0. (11)

Whereas the value of each term in (11) is independent
of the other two, each of them must be equal to a con-
stant, to give three equations of the type

d2V
dx2 = KX .

Writing K as a squared quantity, K = k2
i , each equation

has a simple solution3, such that

V (k1,k2,k3) = ek1x+k2y+k3z, (12)

k2
1 + k2

2 + k2
3 = 0. (13)

These solutions describe both the distribution of charge
density as well as the orbital angular momentum states
of electronic charge on the atom. Without loss of gen-
erality it is sufficient to consider only the one-electron
case of hydrogen-like atoms. In this instance it makes
no sense to consider the electron as a point particle, but
rather as unit charge, symmetrically distributed over
the available space that surrounds the nucleus [1, 7].
Eq. (13) shows that the three separation constants can-
not all be real numbers, except for three equal con-
stants of zero, which imply L = 0, the state of spherical
symmetry, quantum-mechanically known as an s-state.
The case of two zero constants will later be shown not
to be allowed quantum-mechanically, and classically it
corresponds to the Bohr model of the H ground-state
electron on a circular orbit with Lz = h̄.

Of particular interest is the case where one of the
constants (k3 say) is equal to zero. To satisfy (13) the

3The roots of the auxiliary equation D2 − k2 = 0 are ±k. Hence
X = cexp(±kx).

Fig. 3. Cartesian compo-
nents of angular momen-
tum LLL.

remaining two must be complex quantities, giving so-
lutions

X = c1e±kx, Y = c2e±iky.

Solutions of (9) follow as

Vk = c1e±k(x±iy), (14)

Vz = c2z+ c3. (15)

These equations describe the components of angular
momentum on an arbitrary scale that depends on the
value of k. Non-zero ±k implies electronic rotation,
in either direction, on a plane perpendicular to LLL. The
total angular momentum vector is directed at an arbi-
trary angle, θ , with respect to Z and it may be con-
sidered as precessing about Z as shown in Fig. 3. The
z-component, Lz, has a fixed value, but the components
Lx and Ly are variable and depend on the azimuthal an-
gle ϕ .

On writing the Laplacian in spherical polar coordi-
nates it consists of a radial part and an angular part, Λ2,
such that

2 =
1
r2

{
∂
∂r

(
r2 ∂

∂r

)
+Λ 2

}
, (16)

Λ 2 =
1

sinθ
∂

∂θ

(
sinθ

∂
∂θ

)
+

1
sin2

∂2

∂ϕ2 . (17)

The angular momentum evidently depends on Λ2 only.
Separation of the variables is achieved by writing the
potential as the product function V = R(r) ·Θ(θ ) ·
Φ(ϕ), first multiplied by r2 sin2 θ and divided by V
to isolate the azimuthal function, with separation con-
stant m2.
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Hence

sin2 θ
R

d
dr

(
r2 dR

dr

)
+

sinθ
Θ

d
dθ

(
sin θ

dΘ
dθ

)
= m2, (18)

d2Φ
dϕ2 = −m2Φ, Φ = ce±imϕ . (19)

Single-valued solutions for (19) require that Φ(ϕ) =
Φ(ϕ + 2π) which implies integer m. Eq. (18) is next
divided by sin2 θ , to give

1
R

d
dr

(
r2 dR

dr

)
= c, (20)

1
Θ

1
sinθ

d
dθ

(
sin θ

dΘ
dθ

)
− m2

sin2 θ
+ c = 0. (21)

Eq. (21) is recognized as Legendre’s associated equa-
tion, in which the separation constant c = l(l + 1) en-
sures well-behaved solutions for integer l [2]. Written
in the form

1
sinθ

∂
∂θ

(
sinθ

∂Y
∂θ

)
+

1
sin2 θ

∂2Y
∂ϕ2 + l(l +1)Y = 0.

(22)

Eq. (22) is the general differential equation of spheri-
cal surface harmonics of integral order and finite over
the unit sphere. At the surface of a sphere of constant
radius r = a, dV /dr = 0, the first term of the Laplacian
(16) vanishes and the remainder reduces to (22).

Any solution Vl of Laplace’s equation of degree l is
called a solid spherical harmonic, and has the form Vl =
rlY m

l (θ ,ϕ). After separation of variables there are 2l +
1 independent functions Y m

l (θ ,ϕ) = Θ(θ ) · Φ(ϕ) =
Neimϕ Pm

l (cosθ ) for each value of l. For r = 1, Vl = Y m
l

so that Y m
l is the value of the solid harmonic at points

on the surface of the unit sphere defined by the coor-
dinates θ and ϕ , and hence Y m

l is called a surface har-
monic of degree l. Surface harmonics are orthogonal
on the surface of the unit sphere. The associated Leg-
endre polynomials Pm

l (cosθ ) have l −m roots (zeros).
Each of them defines a nodal cone that intersects a con-
stant sphere in a circle, which defines a constant lati-
tude. These nodes are in the surface of the sphere and
not at r = 0, as commonly assumed in the definition
of atomic orbitals. Surface harmonics are undefined at
r = 0.

A moment’s reflection on the geometry outlined in
Fig. 3 suggests that the total angular momentum L2 is

described by Y m
l and the projection Lz by (19). This

surprising result shows that classical theory predicts
the angular momentum of an electron on an atom as
restricted to discrete values depending on the integers l
and m. Only the units are lacking and the success of the
Bohr model of the atom consisted in correctly guessing
the unit of angular momentum quantization as h̄. The
guess implies that L2 = −h̄2Λ 2 and transforms eq. (17)
into the eigenvalue equation

L2Y m
l (θ ,ϕ) = l(l + 1)h̄2Y m

l (θ ,ϕ) (23)

which defines the allowed values of L2 = l(l + 1)h̄2.
Likewise

LzY m
l = mh̄Y m

l (24)

defines the eigenvalues of the Z-component of angular
momentum.

The fact that these values agree exactly with the
quantum-mechanical results is hardly surprisingly see-
ing that Schrödinger’s amplitude equation

2ψ = −2m
h̄2 (E −V)ψ (25)

is the appropriate modification of Laplace’s equation
that leads to the correct quantization of the kinetic en-
ergy (T = E −V ) and angular momentum.

Hydrodynamic Model

It remains to be demonstrated that the hydrody-
namic model correctly predicts the same numerical re-
sults as the Bohr model. In order to produce a sta-
ble atom it is necessary, as before, to assume that an
electrostatic force of attraction be balanced by some
other force, presumably of quantum-mechanical ori-
gin4. Whatever the nature of this force, it should be
of the same magnitude as a classical centrifugal force.
Assuming the negative charge to be effectively concen-
trated at a radial distance r from the nucleus, the force
balance requires that

e2

4πε0r2 =
mev2

ϕ

r
=

p2

mer
(26)

i. e. (dropping subscripts)

1
r

=
me2

4πε0(pr)2 .

4Identified in Bohmian mechanics as the quantum potential.
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This r should not be interpreted to define a circular or-
bit. Conservation of energy requires

E = T +V =
1
2

mv2 +V =
e2

4πε0

(
1
2r

− 1
r

)

= − me4

2(4πε0)2(pr)2 = −Ry
(

1
n2

)
.

(27)

The last equality is inferred from the spectroscopic Ry-
dberg formula,

∆E = Ry
(

1
n1

− 1
n2

)
,

for integer ni. Noting that Planck’s constant h = 2π h̄
has units of angular momentum (Js), an obvious way
of introducing the quantum-mechanical interaction and
establish the Rydberg formula is by substituting, with
Bohr, pr = nh̄ in (27), to give

E =− me4

2(4πε0)2n2h̄2 =− me4

8ε0n2h2 =−Ry
(

1
n2

)
(28)

with the correct value of Rydberg’s constant. It is im-
portant to understand that the final expression (28) for
total energy does not imply non-zero angular momen-
tum of the ground state.

The dynamic model for hydrogen, assumed here,
is equivalent to the hydrodynamics of a liquid globe
with free surface, around a gravitational nucleus, used
in the analysis of tidal waves [5]. During free motion
of the system surface elements of fluid undergo sim-
ple harmonic oscillation along a normal coordinate.
These surface oscillations represent the infinite sum
over all surface harmonics of integral order. They com-
bine to form progressive waves that travel over the sur-
face with no change in form. The motion of surface
elements keep in step, passing simultaneously through
their equilibrium positions. Any free motion may be
simulated by superposition of the surface modes with a
proper choice of amplitude and phase. One of the sim-
plest solutions represents a system of standing waves,
which in the case of an electron, leads directly to the
condition 2πr = nλ , n = 0, 1, . . . that, combined with
De Broglie’s relation λ = h/p, produces the Bohr con-
jecture, pr = nh/2π .

Oscillations at the surface of a sphere are prop-
erly described by the spherical surface harmonics,
Y m

l (θ ,φ), i. e. those harmonics that satisfy Laplace’s
equation on the surface of a sphere. The surface har-
monic Y 0

1 =
√

3/4π cosθ is shown on the left in Fig. 4.

Fig. 4. Graphical illustration of two spherical surface har-
monics on the unit sphere. The lower part of the diagram
shows the mapping centred on a point at r = 0. In all cases
3D images require rotation about Z.

It has a node along the equator. Y±1
1 is on the right. In

hydrodynamics surface oscillations are linked to a ve-
locity potential due to a point source at the origin [5].

Electronic structure

Resolution of the Bohr paradox depends on the as-
sumed nature of an electron. It is intuitively clear that
any such picture should be more detailed than the
zero-dimensional point-particle of elementary-particle
physics, or the alternative notion of pure wave motion.
It seems self-evident that the definition of an entity,
which occurs in a void as either particle or wave, re-
quires that it has substance. The alternative is that it
exists in a substantial medium. In this case the ulti-
mate description of matter, when analyzed beyond the
elementary-particle level, must correspond to a distor-
tion of, or an inhomogeneity, in the vacuum, assumed
to be a continuous fluid, or aether. An object such as an
electron is therefore considered made up of the same
homogeneous stuff as the aether and owing its unique
features to characteristic wave patterns that occur in its
interior or at its interface with the vacuum.

A completely free electron, considered as a highly
compressible fluid, will presumably be of infinite ex-
tent and its most prominent property will be the wave
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motion. A closely confined electron resembles a me-
chanical particle with less obvious wave properties. In
all intermediate situations both wave-like and particle-
like properties may be observed.

Bohm interpretation

A consistent quantum theory of matter and mo-
tion, based on Madelung’s hydrodynamic analogy,
adapted by Bohm [6], has been developed. By substi-
tuting a wave function in polar form, Ψ = Rexp(iS/h̄),
Schrödinger’s equation is decomposed into

∂R2

∂t
+ ·

(
R2 S

m

)
= 0, (29)

∂S
∂t

+
( S)2

2m
− h̄2

2m

2R
R

+V = 0. (30)

Madelung interpreted R2 as the density ρ(xxx) of a con-
tinuous fluid, which has the stream velocity vvv = S/m.
Eq. (29) becomes a continuity equation, ∂ρ/∂t +
div(ρvvv) = 0, and (30) determines changes of the ve-
locity potential S in terms of the classical potential V
and a quantum potential

Vq = − h̄2

2m

2R
R

= − h̄2

4m

[
2ρ
ρ

− 1
2

(
ρ

ρ

)2
]

,

arising in the effects of internal stress in the fluid.
In his interpretation Bohm emphasized that in the

classical limit (Vq → 0) eq. (30) reduces to the classi-
cal Hamilton-Jacobi equation. It is further argued that,
by analogy, eq. (30) defines an ensemble of possible
trajectories of a particulate electron, for which a def-
inite trajectory is predictable if an initial position can
be specified. This interpretation gives equal weight to
particle and wave aspects. The electron moves like a
mechanical particle guided by a wave, but the associa-
tion between particle and wave remains artificial. The
main advantage is recognizing the role of the quan-
tum potential to emphasize the holistic nature of quan-
tum systems. The Bohm interpretation adds nothing to
quantum formalism and all conclusions, although less
obvious, still hold in terms of conventional theory.

Madelung interpretation

All models, from Bohr to Bohm and beyond, have a
problem with the assumed particle nature of electrons.
Madelung’s proposal, in its original form, has, for
the same reason, never been taken seriously. Despite

the claim that the hydrodynamic model is in all re-
spects equivalent to that of Schrödinger, Madelung [4]
admits that a continuous distribution of electronic
charge density presented an intractable problem with
respect to the interaction between charge elements.
Like the molecules that make up macroscopic flu-
ids he seems to be looking for sub-electronic parti-
cles to make up the electron. This is an unnecessary
assumption. For an electron without parts quantum
units of charge, mass and spin indivisibly belong to
the total electron [7], without internal self-interaction.
Non-classical behaviour exists in the flexibility of the
electron.

Any fermion could be seen as a topological chiral
knot in the fabric of space-time. It changes shape in
interaction with its environment and disperses in the
form of a boson on contact with an enantiomer. The
centre of mass follows the trajectory which Bohm as-
signs to a particle. Bohm’s pilot wave is no more than
harmonic undulation in the interior of the electron,
which undergoes perpetual rotation in spherical mode.
As suggested by Madelung electrons that come into
contact do not fuse together like bosons. They may ap-
pear to interpenetrate, but change their shape to avoid
one another; they never coincide and maintain individ-
ual integrity.

A proton, because of its different wave structure is
more massive and less flexible than an electron. When
these particles meet the electron wraps itself around
the proton under the electrostatic attraction directed to-
wards the proton. This interaction modifies the elec-
tronic wave structure and effective size of what is now
described as an atom. In interstellar space where it ex-
ists as a rydberg atom it has dimensions orders of mag-
nitude larger than, for instance, in a terrestrial hydro-
gen plasma. At the effective surface the wave pattern
follows the surface harmonics, consistent with the an-
gular momentum and excitation of the electron. Orbital
angular momentum is observed in a magnetic field BBB
where the electron is subject to a vector potential AAA in
addition to the scalar potential eφ , such that eq. (30)
becomes [10]

∂S
∂t

+
1

2m

(
S− e

c
AAA
)2

+ eφ − h̄2 2R
R

= 0.

In hydrodynamic analogy the flow velocity, as in

mvvv = S− e
c

AAA

is no longer irrotational; curlvvv = −(e/mc)BBB. Because
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of the wave pattern orbital angular momentum and en-
ergy of the electron assume only those discrete values
allowed by the integers associated with the wave pat-
tern. This behaviour of the electron is conveniently de-
scribed by Schrödinger’s equation.

Quantum model

The quantum-mechanical description of angular
momentum follows from substitution of the operator
equivalent of classical momentum, e.g. px →−h̄i∂/∂x
into eqs. (1) – (4). As the order of multiplication is im-
portant in vector products, the operator components

L̂x =
h̄
i

(
y

∂
∂z

− z
∂
∂y

)

etc., do not commute amongst themselves. The com-
mutators, such as (Lx,Ly) = (LxLy − LyLx), are non-
zero and have the values (Lx,Ly) = ih̄Lz, (Ly,Lz) = ih̄Lx,
(Lz,Lx) = ih̄Ly. It means that more than one component
can never be measured simultaneously. The commuta-
tion properties of orbital angular momenta is a non-
classical effect arising from the Lévy-Leblond (LL)
quantum condition [11], Lz = h̄m, which is also the
basis of the Bohr conjecture. This condition is as fun-
damental as the Planck-Einstein and De Broglie con-
ditions, E = h̄ω , p = h̄k, which respectively specify
quantized energy and linear momentum.

The quantum operators lead directly [2] to the eigen-
value eqs. (23) and (24) for a central field. If Lz, the
eigenvalue in a central field, is known, Lx and Ly re-
main unidentified within the limitation

L2
x + L2

y = L2 −m2h̄2 =
[
l(l + 1)−m2] h̄2

The maximum allowed value of m = l shows that, al-
ways, Lz < L. It is therefore impossible to have Lx +
Ly = 0, a situation identified before as the Bohr model.

The eigenfunctions of L2 and Lz are the spherical
harmonics Y m

l (θ ,ϕ). The first few of these, in normal-
ized form, are

l = 0, s-state:

Y 0
0 =

1√
4π

, (31)

l = 0, p-state:

Y 0
1 =

√
3

4π
cosθ =

√
3

4π
· z

r
, (32)

Y±1
1 = ∓

√
3

8π
sinθe±iϕ = ∓

√
3

8π
· x± iy

r
(33)

like (14) and (15) for k = 0,±1.
The chemical implications of the LL condition are

as dramatic as those of the P-E and DB conditions. It
shows that only one of the real eigenfunctions Lx, Ly
and Lz is defined at any instance. The common prac-
tice of using linear combinations of so-called “real or-
bitals” to describe “directed chemical bonds” is there-
fore forbidden by fundamantal quantum theory. Struc-
tural chemists will have to look for an alternative prin-
ciple that defines molecular shape. The quenching of
orbital angular momentum, as pointed out by Sommer-
feld [3], is such an alternative.

Atomic Structure

All quantum-mechanical atomic models are based
on solution of Schrödinger’s equation for an electron
in the field of a stationary proton, viz. eq. (25) with V =
−e2/4πε0r. The eigenvalues of total energy, L2 and Lz,
respectively, are ordered in terms of the quantum num-
bers n = 1, . . . ; l = 0, 1, . . . , (n−1); ml = −l, . . . , +l.
Bound states are those with E < 0. The single electron
on the H atom is assumed to be at the lowest ground-
state energy level, n = 1, l = ml = 0. The experimental
finding that this state was doubly degenerate meant that
at least one more eigenfunction was needed to describe
the behaviour of the electron.

Electron spin

The so-called spin variable that accounts for the ob-
served degeneracy enters [8] the Schrödinger theory
through the factor ih̄ in the time-dependent equation

(
ih̄

∂
∂t

−H
)

Ψ = 0 (Ψ = ψe−iEt/h̄). (34)

On substituting from (23) it follows that

(
h̄2 2

2m
−V

)
Ψ = −ih̄

∂Ψ
∂t

or in terms of a squared Schrödinger operator for a free
particle (V = 0),

S2Ψ =
(

h̄2 2

2m
+ ih̄

∂
∂t

)2

Ψ = 0.
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The complex square root of S2 does not exist and a
linear form such as

S =
(

2mih̄
∂
∂t

)
A− (ih̄ )+C

becomes meaningful only if A and C are defined as
square matrices. The immediate effect of such formu-
lation [2] is that the wave function need to be defined
as a row vector, called a spinor,

Ψ =
(

ψ+
ψ−

)
,

which represents different (spin) angular-momentum
states. Spin, like orbital angular momentum, is also
described by two quantum numbers, but unlike l and
ml these are half-integer numbers. Total spin has
eigenvalues of s(s + 1)h̄2, S =

√
3/4h̄, and multi-

plicity 2s + 1 = 2, for s = 1/2, as found experimen-
tally. Spin components, e.g. Sx = msh̄ (ms = ±1/2)
obey the same commutation rules as the components
of L.

The first theoretical account of electron spin was
provided by the relativistic wave equation of Dirac.
Consequently, it is often stated that spin, or intrinsic
angular momentum, is a quantum and/or relativistic
property. This conclusion is not warranted. A more
convincing physical model is based on the hydrody-
namic model outlined above.

It remains to be explained how an inhomogeneity
in the aether, said to constitute an electron, manages
to move about freely without getting entangled with
the environment. One possible mechanism is through
spherical rotation of the region that defines the elec-
tron. The effect of axial rotation is to wind up the con-
necting medium until it shears and develops a surface
of discontinuity. During spherical rotation the inter-
connecting medium relaxes after every 4π cycle and
does not shear. The rotating electron neither transmits
nor receives rotational energy, but is surrounded lo-
cally by a medium that undergoes cyclical wave mo-
tion. This undulating region constitutes the spin. The
fact that the symmetry group of spherical rotation also
satisfies the spinor version of both Dirac’s equation [9]
and Schrödinger’s equation [1] provides final support
for the proposed hydrodynamic formulation of electron
spin.

The appearance of electron spin indicates that the
conservation of atomic angular momenta must involve

both orbital and spin angular momenta and the con-
served quantity their vector sum JJJ = LLL+SSS.

Energy levels

The spin quantum number s = 1/2 for all one-
electron states, while the magnetic spin quantum num-
ber has the possible values ms = ±1/2, defining states
of equal energy. The doubly degenerate ground state of
the hydrogen atom therefore has the configuration de-
noted by 1s and characterized by the quantum numbers
n = 1, l = 0, ml = 0, ms = ±1/2. The first and second
excited states are the doubly degenerate 2s state, (n =
2, l = 0,ml = 0,ms = ±1/2) and the six-fold degenerate
2p state, (n = 2, l = 1,ml = 0,±1,ms = ±1/2), a total
of 8 electronic states with n = 2. Likewise, for n = 3,4,
etc. there are 18, 32 etc. possible states.

The reasonable expectation that the ground state of
all more-electron atoms should also be the 1s-state is
not confirmed by spectroscopic analysis. It is found
instead that no more than two electrons of any atom
can share the 1s level. Likewise, a maximum of 6,
10 or 14 electrons can share the degenerate p, d or f
levels of a given atom. Detailed analyses have shown
that this distribution is a manifestation of a more gen-
eral fundamental rule known as the exclusion princi-
ple, which applies to all sub-atomic entities with non-
integral spin, known as fermions. It requires the total
wave function, with space and spin parts, to be anti-
symmetric with respect to particle exchange.

To understand the electronic configuration of an
atom it is sufficient to note the equivalent formulation
of the exclusion principle, that no more than two elec-
trons on the same atom can have the same set of four
quantum numbers n, l,ml ,ms. In principle the elec-
tronic energy for each set of allowed quantum numbers
can therefore be calculated from Schrödinger’s radial
equation:

d2ψ(r)
dr2 +

2m
h̄2

[
En −V (r)− l(l + 1)

2mr2

]
ψ(r) = 0.

For an atom of atomic number Z, the term V (r) rep-
resents the potential energy of the electron in the field
of the nucleus and the Z − 1 other electrons. The cal-
culation of V (r) is not a trivial operation and the inter-
pretation of electronic energy and angular momentum
no longer follows the hydrogen pattern, which only ap-
plies in an approximately central potential field. In the
hydrodynamic model however, electrons at deep en-
ergy levels should be constrained in their motion and
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Fig. 5. Spin orientation in d-
multiplets with up to 10 elec-
trons in spherical atoms that
obey the exclusion principle.
The pair in brackets repre-
sent the unlikely alternative
singlet state. The spin count
is defined as σ = 2∑ ms.

those at the highest (valence) level would still find
themselves in a central potential field of an atomic
core, which is equivalent to having an effective posi-
tive charge at the nuclear position. The energy and an-
gular momentum of only the valence shell are therefore
adequately described in terms of hydrogenic quantum
numbers.

Based on the previous conclusion it is possible to
rationalize the electronic structure of the first 20 ele-
ments and the general ordering of all elements of the
periodic table.

Spin ordering

A conspicuous feature of the electronic configura-
tion of atoms, not determined by energy calculations
based on n and l only, namely the relative spin orien-
tation of valence-shell multiplets, is correctly specified
by Hund’s empirical rules: “The first (2l + 1)/2 elec-
trons on a given energy sub level have the same spin
orientation. Addition of more electrons causes step-
wise pairing of spins”. The same predictions are seen
to follow from the assumption that all atoms are spher-
ically symmetrical and therefore have zero resultant
angular momenta. This condition is satisfied if one
of an odd number of electrons that constitute a mul-
tiplet has ml = 0 and all others occur as pairs with
±ml 	= 0. Given n, l and ml , the spin orientation ms
(up or down) is controlled by the exclusion principle,
as demonstrated for the two-electron system in the d-
multiplet l = 2) shown in Fig. 5. In this case there are
two possibilities consistent with zero orbital angular
momentum, for an even number of electrons, a singlet
state with paired spins at ml = 0 and a triplet state with

ml = ±2 (say). Only the triplet state has antisymmetric
space functions, which imply that the probability den-
sity tends to zero as the electrons approach a common
position. The Coulomb repulsion is therefore lower for
the triplet state than for the singlet state, which has a
wave function symmetric in space coordinates.

The predicted spin ordering for all multiplets of a
degenerate d-state, shown in Fig. 5, is consistent with
Hund’s rules.

Molecular Structure

It is known from chemical practice that atoms join
up to form electrically neutral molecules consisting
of positively charged nuclei dispersed in an electronic
fluid. Like the surface of a free electron or atom, the
outer surface of a molecule will also tend to define a
minimum gradient that satisfies Laplace’s equation, al-
beit in an environment of lower symmetry. Although
the solutions are no longer the spherical harmonics of a
central field, they still characterize a minimum angular
momentum, commensurate with the highest symmetry
allowed by intramolecular interaction.

To anticipate the geometrical distribution of atomic
nuclei in a molecular interior it is necessary to con-
sider the realignment of spherical harmonic angular-
momentum vectors in the field of multiple nuclei. A
closely related problem was considered by Jahn and
Teller [12] (JT) who formulated a theorem that clari-
fies several issues around the prediction of molecular
shapes.

Jahn-Teller theorem

JT investigated the effect of electronic orbital de-
generacy on the symmetrical nuclear configurations of
polyatomic molecules. Any molecule has a continuous
set of configurations consistent with a given symmetry.
Among these one equilibrium configuration of mini-
mum energy is stable with respect to all totally sym-
metrical displacements, i. e. those which do not disturb
the symmetry. However, this configuration is not nec-
essarily stable against all other types of nuclear dis-
placement, not if the electronic energy for neighbour-
ing conformations depends linearly upon any of the
nuclear displacements. By analyzing the motion of a
single electron in the respective fields of three colinear
nuclei and of four nuclei in square-planar array, it is
demonstrated that linear and non-linear molecules re-
spond in fundamentally different ways to nuclear dis-
placement.
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Fig. 6. Energy change on symmetrical and antisymmetrical
distortion of trinuclear arrangement with angular momentum
degeneracy.

The states of the electron are classified as σ , π or
δ for orbital angular momentum projections of 0, ±1,
±2 (in units of h̄) along the polar axis, which is not in
an arbitrary direction, but is fixed by symmetry. The
σ states are non-degenerate, while the π , δ , etc. states
are each two-fold degenerate, corresponding to either
clockwise or anti-clockwise rotation of the electron
about the polar axis. For the trinuclear molecule an un-
symmetrical displacement can, without loss of gener-
ality, be considered as displacement of the central nu-
cleus by a distance d perpendicular to the nuclear axis.
This displacement destroys the axial symmetry and re-
moves the degeneracy. Each degenerate state splits into
two states, one symmetrical with respect to reflection
in the plane of the nuclei and the other antisymmetrical
with respect to the same plane. These states have dif-
ferent energies Es and Ea. As the nuclear displacement
is varied these states and their energies change contin-
uously, but their symmetry remains. Displacements of
d and −d result in the same state and energy, as shown
in Fig. 6. The energies Es and Ea are even functions
of d, and all that is required for stability with respect
to nuclear displacement is that the function be positive
in both cases. This condition is assured by the orbital
angular momentum, which is therefore responsible for
stabilizing the linear arrangement. The effect of dis-
placement is to change the alignment of the angular
momentum vector Lz = mh̄ associated with the eigen-
function e±imϕ , shown in Fig. 7. To change the direc-
tion of Lz requires work against kinetic energy and con-
sequently the angular momentum acts like a gyroscope
to realign the vectors.

As a counter example the motion of a single elec-
tron in the field of a square-planar arrangement of four
identical nuclei is considered. In the previous exam-
ple the total wave function was generated by rota-
tion of the angular-momentum eigenfunction in any
half-plane (shaded in Fig. 7) about the polar axis, i. e.

Fig. 7. Illustration to demonstrate the rotation of an orbital
angular momentum vector.

Fig. 8. Energy changes on in-plane symmetry breaking in a
square-planar arrangement with electronic orbital degener-
acy.

multiplication by eimϕ . In the square-planar arrange-
ment four half-planes rotate together about the four-
fold symmetry axis, with −π/2≤ϕ ≤ π/2 for m = ±1.
The displacements shown in Fig. 8 may be regarded
as positive and negative values of the same nuclear
displacement. This nuclear displacement reduces the
four-fold symmetry to two-fold. The degenerate state
splits into two states Φσ and Φσ ′ , the first with angular
momentum projected perpendicular to the symmetry
plane σ and the second perpendicular to σ ′. Because
the configurations I and II are equivalent the energies
Eσ and Eσ ′ are related, such that

Eσ (I) = Eσ ′(II)

and vice versa. As seen from Fig. 8 the energy lev-
els cross at the energy E0 of the undisplaced configu-
ration. There is no symmetry reason which precludes
a linear dependence of the energy levels upon the nu-
clear displacement in the neighbourhood of E0, and the
square-planar configuration can in general not be a sta-
ble equilibrium configuration.

The results obtained from the two illustrative exam-
ples were generalized by examination of the pathways
of allowed symmetry breaking for all relevant sym-
metry point groups, excluding those of complete axial
symmetry. It was found that all non-linear nuclear con-
figurations with an orbitally degenerate one-electron
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Fig. 9. Diagram to demonstrate the stability of an electroni-
cally non-degenerate square-planar system against distortion.

state are unstable against some normal displacement,
not the totally symmetrical.

Non-degenerate states

One aspect of Jahn and Teller’s theorem which is
repeatedly emphasized in the chemical literature is the
distortion of symmetrical molecules with one-electron
orbital degeneracy. These cases are the exceptions to
a general rule which is rarely emphasized nor applied
to problems of molecular conformation. The rule ap-
plies wherever the pair of degenerate levels (±ml) ac-
commodate two electrons, with total electronic energy
Eσ + Eσ ′ as shown in Fig. 9. The total conformational
energy in this case has a minimum at E0 which stabi-
lizes the symmetrical arrangement of nuclei. The rea-
son for this stabilization is hinted at, but not explicitly
stated by JT. It relates to the electronic orbital angular
momentum.

Orbital angular momentum arises from the rotation
of electronic charge about axes that depend on the
environment, represented by either an applied mag-
netic field or the polarization by ligand nuclei that sur-
round the reference atom. The total angular momen-
tum, which is the vector sum of the individual contri-
butions, reduces to zero if the component charge rota-
tions occur in opposite sense with respect to a single
axis of rotation. The angular momentum is said to be
quenched and the corresponding minimum kinetic en-
ergy of rotation stabilizes this symmetrical situation.

In a free atom the electrons move in the symmetri-
cal central Coulomb field of the nucleus and the angu-
lar momenta of electrons at a degenerate pair (±ml) of
energy levels is quenched identically. For an atom in a
molecule the spherical symmetry is broken and the an-
gular momentum vectors are redirected as demanded
by the symmetry of the molecular environment. The

Fig. 10. Diagram to demon-
strate the quenching of or-
bital angular momentum in
the methane molecule. Mag-
netic moments cancel in
projection along each possi-
ble H-C polarization direc-
tion, because of p-electron
charges rotating in opposite
sense, as shown.

principle of minimum orbital angular momemtum still
implies that the favoured conformation will be of a
symmetry that quenches the orbital angular momen-
tum.

The symmetry groups considered by JT are all of
the type that quenches the orbital angular momenta
of electrons derived from free-atom energy levels that
constitute degenerate pairs (±ml) in a spherically sym-
metrical environment. The only molecules excluded
from the set are those without any symmetry, i. e.
the chiral molecules. An important consideration is
that chiral molecules have residual orbital angular mo-
mentum in projection along a polar direction, e.g. an
applied magnetic field. The JT distortions consist of
spontaneous breaking of molecular symmetry by a nor-
mal displacement that introduces an interaction, which
lowers the energy of the system, without affecting the
polar projection of the angular momentum5. JT distor-
tion therefore does not cause optical activity.

Molecular shape

The central JT theme describes the relationship
between the symmetry and stability of non-linear
molecules, analyzed as a function of orbital degen-
eracy. This, somewhat misleading terminology, refers
specifically to degenerate states available for one single
electron. The enormous volume of more recent work
devoted to the study of JT effects [13] focusses ex-
clusively on vibronic interactions at symmetry-related
degenerate intersections on potential energy surfaces.
The more common and more important prediction of
symmetrical structures stabilized by non-degenerate
angular momentum states is largely forgotten.

The first step in the formation of a molecule is to
consider a given atom as surrounded by a number of
non-interacting secondary atoms, or ligands, which is

5As for free atoms the unpaired electron has an effective mag-
netic quantum number ms = 0.
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also the assumption of crystal field theory. The energy
and angular momentum of the primary atom are con-
served, but differently distributed, depending on the
symmetry of the secondary shell of atoms. These quan-
tities are still the eigenvalues of an atomic Schrödinger
equation, in a central field modified by interaction with
the secondary shell. To first approximation it is cor-
rect to assume that the orbital angular momentum is
conserved in magnitude, but not in orientation. The JT
approach is to modify the central-field description of
energy and angular momentum eigenvalues in terms
of the representations of each symmetry group con-
cerned. It is almost axiomatic to assume that the ar-
rangement of identical ligands around a central atom
should be of the highest possible symmetry; like as-
suming a spherical shape for free atoms. According
to JT the resulting molecular structure automatically
ensures quenching of the orbital angular momentum.
Introduction of unlike ligands lowers the symmetry,
which remains sufficient to quench the angular mo-
mentum, until no two ligands are alike. This prop-
erty has been demonstrated [14] to produce a tetra-
hedral structure for methane. It relies on the pres-
ence of two p-electrons on the free carbon atom,
with ms = ±1.

The significant new result is that the p-electron den-
sity should rotate in sets of parallel planes, perpendicu-
lar to the lines connecting H and C nuclei. For fixed nu-
clei these planes intersect in points that define regular
octahedra, shown in Fig. 10 for two different spacings
with respect to the central carbon nucleus. The smaller
octahedron is defined by midpoints of the lines con-
necting the hydrogen nuclei. The larger one contains
the hydrogen positions, on the black dots. Uncertainty
associated with the circulation radius is sensitive to the
chemical nature and electronegativity of the ligands.

Qualitatively however, the prediction is well in line
with the various criteria for the definition of atomic
shape based on charge-density distribution [15] and re-
flects the statement of the author:

In reality, chemical bonding is a molecular
property, not a property of atomic pairs.

Many larger molecules resemble an assembly of un-
saturated fragments consisting of the symmetrical cel-
lular units of the methane type, after removal of one
or more ligands, e.g. CH3, CH2, etc. When such frag-
ments combine to form saturated molecules their rel-
ative orientation in the final product must ensure that
the orbital angular momentum stays quenched.
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