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2,5-Diformylbenzene-1,4-diol (5) is a well-suited starting compound for the preparation of ditopic
hydroquinone-based ligands. Here, we report an optimized synthesis of 5 which improves the overall
yield from published 7 % to 42 %. Three new ditopic Schiff base ligands, 2,5-[' Pr,N(CH3),N=CH],-
1,4-(OH),-CgHy (8), 2,5-(pyCH2N=CH),-1,4-(OH),-CgH; (9), and 2,5-[py(CH;),N=CH];-1,4-
(OH),-CgH2 (10), have been synthesized from 5 and structurally characterized by X-ray crystal

structure analysis (py = 2-pyridyl).
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Introduction

The electrochemical properties of a metal complex
are to a large extent determined by the ligand sphere.
Careful ligand design is therefore crucial for the con-
struction of efficient redox systems which in turn play
an essential role both in homogeneous catalysis and in
materials science [1-4].

Our group is interested in the electrochemical prop-
erties of oligonuclear transition metal complexes with
electronically interacting metal sites. We thus require
ligands capable of linking two or more transition metal
centers and of supporting an electronic communica-
tion between them [5-7]. The concept is to modu-
late the degree of metal-metal interactions by electro-
chemical manipulation of the bridging unit which thus
needs to be able to undergo reversible electron trans-
fer itself. Currently, one focus lies on hydroquinone
derivatives as bridging ligands since they exist in three
different oxidation states (hydroquinone, semiquinone,
quinone) and their redox-activity is preserved after
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metal coordination. In the literature, only very
few chelating ditopic ligands derived from hydro-
quinone have been reported [8—11]. One example
is the compound 2,5-bis(pyrazol-1-yl)-1,4-dihydroxy-
benzene [8] which we have used for the synthesis and
structural characterization of the Cu''-containing co-
ordination polymer A (Fig. 1) [11,12]. For an under-
standing of its electronic properties it was also nec-
essary to synthesize dinuclear complexes B as sol-
uble model systems (Fig. 1). However, attempts to
prepare B-type molecules by treating 2,5-bis(pyrazol-
1-yl)-1,4-dihydroxy-benzene with appropriate Cu'!-
containing precursors in the presence of Brgnsted
bases were hampered by the pronounced tendency
of the system to form polymers A. The only dinu-
clear complex B that could be isolated so far required
PMDTA as an ancillary ligand and proved to be unsta-
ble in solution [11].

Due to this fact we had to develop an alternative
hydroquinone linker and have chosen chelating Schiff
base ligands C as our target molecules (Fig. 1). In

Fig. 1. The Cu'' coordina-
tion polymer A based on the
2,5-bis(pyrazol-1-yl)-1,4-di-
hydroxy-benzene ligand, the
corresponding dinuclear com-
plexes B, and the new ditopic
R hydroquinone  Schiff  base
C ligands C.
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order to give the resulting dinuclear complexes more
stability, we incorporated additional donor sites into
the imine side-chains R. For the synthesis of C, the
2,5-diformylbenzene-1,4-diol (5) is required as the key
starting material. Compound 5 (Scheme 1) is already
known but was obtained in an overall yield of only
7% to 20% [13-15]. Moreover, none of the reaction
byproducts were identified. The purpose of this paper
is to report an improved synthesis of 5 together with
a full characterization of the main reaction intermedi-
ates as well as some byproducts. Finally, the syntheses
and molecular structures of selected C-type ligands are
described.

Results and Discussion
Syntheses

The synthesis of 5 starts with the chloromethylation
of commercially available 1,4-dimethoxy-benzene (1)
to give the p-bis(chloromethyl)-benzene 2 (Scheme 1).
Compared to the published protocol [13] the yield of 2
was improved from 77 % to 86 % by running the reac-
tion at 0 °C as opposed to r.t., and by shortening the
reaction time from3 hto 1 h.

In the subsequent step, 2 was subjected to a Som-
melet reaction to afford the dialdehyde 3 [14]. To find
a way to improve the low reported yield [14] of 3
(32%), the nature of the byproducts was determined
by NMR spectroscopy. In addition to the resonances
of the desired dialdehyde, the proton spectrum of the
crude reaction mixture showed a signal at 6 = 4.69
assignable to the RCH,OH fragment of an aliphatic
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Scheme 1. Synthesis of 5&:
0 (i) CH204q, HCI (yield: 86 %);
u k (ii) 1. hexamethylenetetramine,
0O 2. H,O, HCI (yield: 70%);
0 _0 kOH (iii) HBrag, CH3COOH (yield:

alcohol. In the methoxy region of the spectrum, two
signals at 3.87 and 3.80 ppm (integral ratio 1: 1) indi-
cated the presence of an unsymmetrically substituted
1,4-dimethoxy-benzene derivative. After isolation by
flash chromatography and structural characterization
by X-ray crystallography, the byproduct was identified
as compound 4. The formation of 4 can be explained
after a closer look at the mechanism of the Som-
melet reaction: addition of hexamethylenetetramine
to an organochloride RCH,ClI leads to the formation
of a quaternary ammonium salt [RCH>N(CH,)gN3]ClI
which upon hydrolysis liberates formaldehyde and am-
monia. The resulting primary amine RCH;NH is then
oxidized to the imine which reacts further to the de-
sired aldehyde RC(O)H. There are three possibilities
for an alcohol RCH,OH to be formed during this reac-
tion sequence: 1) hydrolysis of residual RCH,CI that
has not been transformed into the ammonium salt,
2) nucleophilic substitution of CgH12N4 by water in
the ammonium salt, and 3) a crossed Cannizzaro re-
action [16,17] between RC(O)H and formaldehyde.
Alcohol 4 may even react further with formaldehyde
to give acetal 7 as indicated by the *H NMR spec-
trum and the mass spectrum of the crude reaction mix-
ture. The formation of 7 was verified in an indepen-
dent experiment where we added an analytically pure
sample of 4 to aqueous formaldehyde. The reaction
is reversible since compound 4 was fully recovered
after treatment of 7 with hydrochloric acid. Follow-
ing the procedure described in the Experimental Sec-
tion of this paper, we have reproducibly obtained 3 in
a yield of 70% rather than 32 % [14]. Phenolether 3
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R = CH,CH,N'Pr,

R =CH,py
5 + 2RNH, HO

R= CH2CH2py

was deprotected to give hydroquinone 5 using hydro-
bromic and acetic acid. After the recommended [15]
reaction time of 5 h, a mixture of the desired com-
pound 5 and the monomethylated dialdehyde 6 was
obtained. Flash chromatography gave 5 in the reported
yield of 30% [15]. The yield of 5 could be improved
to 69 % by extending the reaction time and continuous
monitoring of the reaction progress by thin-layer chro-
matography (TLC).

The Schiff bases 8, 9, and 10 were prepared by treat-
ing 1 equiv. of 5 with 2 equiv. of 2-(diisopropylamino)
ethylamine (8), 2-(aminomethyl)pyridine (9), or 2-
(2-aminoethyl)pyridine (10; Scheme 2) [18]. These
amines were chosen such that ligands of differing steric
demand (i. e. 8and 9) and different length of the chelat-
ing tether (i.e. 9 and 10) are now available for com-
plexation studies.

NMR spectroscopic investigations

The 'H NMR spectrum of 2 is characterized by
a signal at 4.64 ppm assignable to the chloromethyl
groups (8(*3C) = 41.3). The successful synthesis of 3
by the Sommelet reaction is proven by the presence of
aldehyde resonances at §(*H) = 10.50 and §(**C) =
189.2. In the NMR spectra of 5, methoxy signals are
absent and a broad proton resonance at 10.74 ppm
(s, 2 H) appears instead, testifying to the presence of
two free hydroxyl groups. For all three Schiff base lig-
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Scheme 2. Synthesis of the Schiff base
ligands 8- 10.

ands 8-10, resonance patterns in accord with the pos-
tulated molecular symmetry are observed. Moreover,
an integral ratio of 2:1 for the proton resonances of
the imine substituents as compared to the signals of
the central hydrogquinone core indicates the quantita-
tive transformation of aldehyde groups into imino side
chains. All *H and 3C NMR signals of 8- 10 appear
in the expected regions of the spectra and thus do not
merit further discussion.

X-Ray crystal structure analyses

Details of the X-ray crystal structure analyses of 2—
4, 6, and 8—10 are summarized in Table 1. The molec-
ular structures are shown in Figs 2-8; selected bond
lengths and angles are listed in the corresponding fig-
ure captions.

In the crystal lattice, the planar molecules 2, 3, 4,
and 6 are arranged in stacks via intermolecular « - - - 7-
interactions. Adjacent stacks are linked via hydrogen
bonds. All bond lengths and angles possess typical val-
ues for this type of compounds.

The chloromethylated hydroquinone derivative 2
(Fig. 2) is centrosymmetric, with half a molecule
in the asymmetric unit, and crystallizes in the tri-
clinic space group P1. There are no short intramolec-
ular interactions. The shortest intermolecular C.--C
m-contact between molecules of the same stack
amounts to 3.419(1) A. Neighboring stacks are con-
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Fig. 4. Molecular structure of 4 in the solid state; ther-
mal ellipsoids are drawn at the 509% probability level.
Selected bond lengths (A), bond angles (deg), and torsion
angles (deg): C(3)-C(8) 1.473(2), C(6)-C(10) 1.510(1),

C(2-0(1) 1.368(1), C(5)-0(3) 1373(1), C(8)-O(2)
1.218(1), C(10)-O(4) 1.425(1); C(2)-O(1)-C(7) 117.1(1),
C(3)-C(8)-0(2) 123.7(1), C(5)-O(3)-C(9) 116.2(1),
C(6)-C(10)-0(4) 113.1(1); C(1)-C(2)-O(1)-C(7) —14.2(2),
C(2)-C(3)-C(8)-0(2)  178.3(1),  C(4)-C(5)-O(3)-C(9)
13.3(2), C(1)-C(6)-C(10)-O(4) —5.0(1). Symmetry trans-
formations used to generate equivalent atoms: 1" —x, v,
-z+1/2.

Fig. 3 illustrates the structure of dialdehyde 3 in
the solid state (triclinic space group P1). Each of
the two independent molecules is centrosymmetric,
two half molecules thus being present in the asym-
metric unit. Since their structural parameters do not
differ significantly from each other, only the val-
ues of molecule 1 are given here. The methoxy as
well as the aldehyde groups are almost coplanar with
the phenyl rings (deviation of C(4)/O(2) from the
plane of the phenylene ring: 0.033/0.088 A). There is
a short intramolecular interaction between the alde-
hyde hydrogen atom and its neighboring methoxy
oxygen atom of H(5)---O(1) = 2.40(2) A with a
bond angle C(5)-H(5)---O(1) of 101(1)°. The short-
est C.--C contact between molecules of the same
stack is 3.293(2) A. Stacks are linked via intermolec-
ular C-H---O contacts between aldehyde oxygen
atoms and methoxy methyl groups (H---O=2.53(2)
t02.63(2) A).

The byproduct 4 crystallizes from CH,Cl, (mono-
clinic space group C2/c, Fig. 4). There are one
molecule of 4 and half a solvent molecule in the
asymmetric unit. The X-ray crystal structure analysis
fully confirms our interpretation of the NMR spectra
in that 4 contains an aldehyde group together with
a hydroxymethyl substituent. The stacks of 4 have
short C---C distances in the range between 3.426(1)
to 3.546(1) A. Adjacent stacks are connected by in-
termolecular hydrogen bonds between hydroxymethy!
groups (H---O=1.90(2) A, angle O-H-O=175(2)°).

The molecular structure of the partly depro-
tected byproduct 6 (monoclinic, P2 /n) is plotted in
Fig. 5. All side groups are nearly coplanar with the
central six-membered ring (C(2)-C(3)-C(7)-0(2) =
0.8(2)°, C(4)-C(5)-0(3)-C(8) = 1.7(1)°, C(1)-C(6)-
C(9)-0(4) = -=3.1(1)°). Each hydroxyl group estab-
lishes a bifurcated hydrogen bond to two aldehyde
oxygen atoms (intramolecular: H---O = 1.92(2) A; in-
termolecular: H---O = 2.29(2) A).

In the three Schiff bases 8, 9, and 10 (Figures 6—
8), the C(4)-N(1) bond lengths vary in the small range
between 1.273(2) (8) and 1.278(3) A (10) which is
characteristic of imine double bonds. These C=N frag-
ments as well as the hydroxyl groups are largely copla-
nar with the respective central six-membered ring and
linked by intramolecular hydrogen bonds (OH---N
distances vary from 1.77(3) to 1.90(2) A).

Fig. 6 shows the molecular structure of 8 (mono-
clinic space group P2;/c). Because of the bulky 2-
(diisopropylamino)ethyl substituents at the imino ni-
trogen atoms, 8 is the only compound which is not ar-
ranged in stacks in the solid state. The conformation
of the diisoproylamino groups can be regarded as in-
termediate between planar and pyramidal (sum of the
three valence angles about N(2) = 345.7°).

Compound 9 also crystallizes in the monoclinic
space group P2;/c (Fig. 7). Each pyridyl ring in-
cludes a dihedral angle of 46.7° with the aromatic
bridge. The crystal lattice consists of columns of
molecules along the crystallographic b axis. Molecules
within each stack show intermolecular C.--C dis-
tances of 3.387(2) A between phenyl groups and
of 3.560(3) A between pyridyl groups.

In the solid state, 10 (monoclinic, P23 /n; Fig. 8)
also features stacks of molecules along the crystallo-
graphic b axis. In contrast to 9, the pyridyl rings in 10
are almost coplanar with the aromatic linker (dihedral
angle=6.7°).
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Fig. 5. Molecular structure of 6 in the solid state; thermal ellipsoids are drawn at the 50 % probability level. Selected
bond lengths (A), bond angles (deg), and torsion angles (deg): C(3)-C(7) 1.464(1), C(6)-C(9) 1.478(1), C(2)-0(1)
1.356(1), C(5)-0(3) 1.364(1), C(7)-0(2) 1.216(1), C(9)-0(4) 1.212(1); C(3)-C(7)-0(2) 124.3(1), C(5)-0O(3)-C(8) 116.9(1),
C(6)-C(9)-0(4) 123.6(1); C(2)-C(3)-C(7)-0(2) 0.8(2), C(4)-C(5)-0O(3)-C(8) 1.7(1), C(1)-C(6)-C(9)-0O(4) —3.1(2).

Fig. 6. Molecular structure of 8 in the solid state; thermal ellipsoids are drawn at the 50 % probability level. Selected
bond lengths (A), bond angles (deg), and torsion angles (deg): C(1)-O 1.361(2), C(2)-C(4) 1.456(3), C(4)-N(1) 1.273(2),
C(5)-N(1) 1.457(3), C(6)-N(2) 1.459(2); C(2)-C(4)-N(1) 122.3(2), C(4)-N(1)-C(5) 117.6(2), C(6)-N(2)-C(7) 115.0(2),
C(6)-N(2)-C(10) 113.8(2), C(7)-N(2)-C(10) 116.9(2); C(3)-C(2)-C(4)-N(1) 179.8(2), C(4}—N(1)—C(5)—C(6) —96.9(2),
N(1)-C(5)-C(6)-N(2) 62.7(2). Symmetry transformations used to generate equivalent atoms: ** —x, —y+1, —z

Fig. 7. Molecular structure of 9 in the solid state; thermal ellipsoids are drawn at the 50 % probability level. Se-
lected bond lengths (A), bond angles (deg), and torsion angles (deg): C(1)-O 1.364(2), C(3)-C(4) 1.465(2), C(4)-N(1)
1.275(2), C(5)-N(1) 1.459(2); C(3)-C(4)-N(1) 122.0(2), C(4)-N(1)-C(5) 117.6(1); C(2)-C(3)-C(4)-N(1) —176.9(2),
C(3)-C(4)-N(1)-C(5) —179.1(1), C(4)-N(1)-C(5)-C(6) 129.1(2). Symmetry transformations used to generate equivalent
atoms: ¥ —x, —y+1, —z+2.
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Fig. 8. Molecular structure of 10 in the solid state; C(1)-O 1.365(3), C(2)-C(4) 1.460(4), C(4)-N(1) 1.278(3), C(5)-N(2)
1.466(3); C(2)-C(4)-N(1) 122.3(3), C(4)-N(1)-C(5) 117.7(2); C(1)-C(2)-C(4)-N(1) 1.0(4), C(2)-C(4)-N(1)-C(5) 177.3(2),
C(4)—N§%)—C(5)—C(6) —103.9(3), N(1)-C(5)-C(6)-C(7) —177.9(2). Symmetry transformations used to generate equivalent

atoms: ** —x+2, —y+3, -z

Conclusion

The synthesis of 2,5-diformylbenzene-1,4-diol (5)
has been improved from an overall yield of 7.4
to 41.5%. As unwanted side reactions, we identi-
fied the reduction of aldehyde substituents to hy-
droxymethyl groups (cf. compound 4) and a non-
quantitative deprotection of the hydroquinone core in
the last step of the synthesis sequence. Both side reac-
tions could be suppressed to a considerable extent.

With this efficient synthesis of 5, a variety of di-
topic Schiff base ligands featuring a redox-active hy-
droquinone core are now readily available which are
promising bridging ligands for the preparation of di-
nuclear transition metal complexes.

Experimental Section
General remarks

IH and 13C NMR spectra: Bruker AM 250, Bruker
DPX 250 spectrometers. Chemical shift values (8) are re-
ported relative to tetramethylsilane; abbreviations: s (sin-
glet), d (doublet), t (triplet), vt (virtual triplet), sept (septet),
m (multiplet), py (2-pyridyl). ESI mass spectra: Fisons (now
Micromass) VG Platform Il. MALDI-TOF spectra: Fisons
(now Micromass) VG Tofspec. Elemental analyses were per-
formed by the microanalytical laboratory of the University
of Frankfurt. Flash column chromatography: Merck silica
gel 60 (40-60 um, 230-400 mesh). Thin-layer chromato-
graphy (TLC): Merck silica plates (Kieselgel 60 F254 on alu-
minium with fluorescence indicator); spots on TLC plates
were visualized by UV-detection at 254 nm. Solvents and
reagents were purchased from Aldrich Chemicals, Merck and
Fluka. CHCI3 was dried over molecular sieves (4 A).

Synthesis of 2

To a solution of 1,4-dimethoxybenzene (69.35 g,
0.50 mol) in dioxane (400 mL) and aqueous hydrochlo-
ric acid (37%, 65 mL), three equal portions of aqueous
formaldehyde (37 %; overall amount: 100.5 mL, 1.35 mol)

were added at intervals of 30 min with stirring at 0 °C.
During the entire period, hydrogen chloride gas was passed
through the reaction mixture. After stirring for 1 h at r.t.,
more aqueous hydrochloric acid (37 %, 195 mL) was added
and the resulting solution cooled to 10 °C. The colorless
precipitate formed was collected on a frit and dried un-
der vacuum. Recrystallization of 2 from acetone afforded
X-ray quality crystals. Yield: 101.33 g (86 %). — 1H NMR
(250.13 MHz, CDCl3): 6 = 6.93 (s, 2 H, CH), 4.64 (s,
4 H, CHy), 3.86 (s, 6 H, CHs3). — 13C NMR (62.9 MHz,
CDCl3): 6 = 151.1 (COCHg3), 126.9 (CCH,CI), 113.4 (CH),
56.3 (CH3), 41.3 (CHy). — ESI-MS: m/z (%) = 199 (100)
[M-CI]*™. = C1oH12Cl,0, (235.1): calcd. C 51.09, H 5.14;
found C 50.81, H 5.14.

Synthesis of 3

2 (10.00 g, 0.04 mol) and hexamethylenetetramine
(11.2 g, 0.08 mol) were dissolved in anhydrous chloroform
(150 mL) and the mixture heated to reflux for 3 h. Subse-
quent cooling to 5 °C led to the formation of a yellow mi-
crocrystalline solid which was isolated by filtration and re-
dissolved in water (130 mL). The solution was heated to re-
flux for 2 h. After cooling to r.t., aqueous hydrochloric acid
(37 %, 5 mL) was added, whereupon a yellow solid precip-
itated from the solution. This crude product was collected
on a frit. The aqueous filtrate was extracted with chloroform
(5 x 30 mL), the extracts were dried over magnesium sul-
fate, filtered, and evaporated to dryness under reduced pres-
sure to yield a second crop of product. Subsequent flash
chromatography (dichloromethane/ethyl acetate, 2:1) pro-
vided 3 and 4 as yellow solids. Recrystallization of 3 from
dichloromethane/hexane (1:1) afforded X-ray quality crys-
tals. Yield of 3: 5.40 g (70 %).

Analytical data of 3: Rs (dichloromethane/ethyl acetate,
2:1)=0.87. - 'H NMR (250.13 MHz, CDCl3): § = 10.50
(s, 2 H, CHO), 7.45 (s, 2 H, CH), 3.94 (s, 6 H, CH3). —
13C NMR (62.9 MHz, CDCl3): 6§ = 189.2 (CHO), 155.7
(COCHg3), 129.1 (CCHO), 110.9 (CH), 56.2 (CH3). — ESI-
MS: m/z (%) =194 (100) [M]+. —C10H1004 (194.2): calcd.
C 61.85, H 5.19; found C 61.61, H 5.24.
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Analytical data of 4: R; (dichloromethane/ethyl acetate,
2:1)=0.45. - 1H NMR (250.13 MHz, CDCl3): & = 10.38
(s, 1 H, CHO), 7.24, 7.04 (2xs, 2 x 1 H, CH), 4.69 (s,
2 H, CHy), 3.87, 3.80 (2xs, 2 x 3 H, CH3) 2.53 (s, 1H,
OH). — 13C NMR (62.9 MHz, CDCl3): § = 189.3 (CHO),
156.9, 150.8 (COCHgs), 138.1 (CCH,0H), 123.6 (CCHO),
111.8,107.9 (CH), 61.2 (CHy), 56.2, 55.7 (CH3). - ESI-MS:
m/z (%) =196 (100) [M]+. —C10H1204-0.33 H,0O (202.1)1
calcd. C 59.40, H 6.31; found C 59.13, H 6.34.

Synthesis of 5

A mixture of 3 (3.71 g, 0.02 mol), acetic acid (99.5 %,
190 mL) and aqueous hydrobromic acid (48%, 160 mL)
was heated to reflux for 14 h. After cooling to r.t., the so-
lution was poured into a mixture of chloroform and wa-
ter (150 mL, 1:1), the aqueous layer was extracted with
chloroform (3 x 75 mL) and the combined organic phases
were dried over magnesium sulfate. After filtration, the fil-
trate was evaporated to dryness under reduced pressure to
give 5as a yellow solid. Yield: 2.31 g (69 %). — R¢ (ethyl ac-
etate/hexane, 1:1) = 0.47. — 1H NMR (250.13 MHz, DMF):
6 = 10.74 (s, 2 H, OH), 10.42 (s, 2 H, CHO), 7.36 (s,
2 H, CH). - 13C NMR (62.9 MHz, DMF): § = 191.8
(CHO), 153.8 (COH), 128.2 (CCHO), 116.6 (CH). — ESI-
MS: m/z (%) = 165 (100) [M-H]~. — CgHgO4 - 0.25 H,0
(170.6): calcd. C 56.31, H 3.84; found C 56.66, H 3.77.
Our optimised synthesis protocol does not lead to detectable
amounts of 6. In contrast, if the published [15] synthesis pro-
tocol is followed, substantial amounts of 6 are formed as
byproduct. Compounds 5 and 6 can be separated by flash
chromatography (ethyl acetate/hexane, 1:1).

Analytical data of 6: R (ethyl acetate/hexane, 1:1)=
0.40. - 'H NMR (250.13 MHz, DMF): § =10.72 (s, 1 H,
OH), 10.41 (s, 2 H, CHO), 7.46, 7.37 (2x s, 2x 1 H, CH),
3.97 (s, 3 H, CH3). - 13C NMR (62.9 MHz, DMF): § =
191.5, 189.4 (CHO), 155.1, 154.9 (COH, COCHj3), 130.3,
127.4 (CCHO), 116.1, 112.1 (CH), 56.5 (CH3).

General procedure for the synthesis of 8, 9, and 10

5 (162 mg, 1 mmol) and the appropriate amine (2 mmol)
were dissolved in methylene chloride (70 mL) and the solu-
tion heated to reflux for 1 h. After cooling tor.t. all volatiles
were evaporated under reduced pressure and the remaining
crude product recrystallized from acetonitrile.

Analytical data of 8: Yield: 376 mg (90 %), brown solid.
- 1H NMR (250.13 MHz, CD,Cl,): § = 12.75 (s, 2 H,
OH), 8.24 (s, 2 H, HC=N), 6.83 (s, 2 H, CH), 3.58 (t,
3JHH = 6.4 Hz, 4 H, CHy), 3.01 (sept, 3JHH = 6.6 Hz,
4 H, CH(CHs)), 2.75 (t, 3JHH = 6.4 Hz, 4 H, CH,), 0.98
(d, 3JHH = 6.6 Hz, 24 H, CHs). — 13C NMR (62.9 MHz,
CD,Cly): 6 = 164.9 (C=N), 152.8 (COH), 121.4 (CCHN),
117.9 (CH), 61.0 (CH,), 48.6 (CH(CHs),), 45.7 (CHy),

20.7 (CHg). — ESI-MS: m/z (%) = 419 (100) [M+H]*. —
C24H42N4 0O (418.6): calcd. C 68.86, H 10.11, N 13.38;
found C 68.37, H 10.22, N 13.07.

Analytical data of 9: Yield: 291 mg (84 %), orange solid.
- 1H NMR (250.13 MHz, CD,Cl,): § = 12.48 (s, 2 H,
OH), 8.56 (d, 3JHH = 4.4 Hz, 2 H, py-H6), 8.51 (s, 2 H,
HC=N), 7.71 (vt, 3JHH = 7.7 Hz, 2 H, py-H4), 7.35 (d,
3JHH = 7.9 Hz, 2 H, py-H3), 7.22 (vt, 3JHH = 5.2 Hz, 2 H,
py-H5), 6.93 (s, 2 H, CH), 4.94 (s, 4 H, CH,). - 13C NMR
(62.9 MHz, CD,Cly): 6 = 166.4 (C=N), 157.9 (py-C2),
152.8 (COH), 149.6 (py-C6), 136.8 (py-C4), 122.4, 122.1,
121.7 (CCHN, py-C3,5), 118.5 (CH), 65.4 (CH5). - MALDI-
TOF-MS [positive ions, matrix: 6-aza-2-thiothymine (ATT)]:
m/z: 346 [M]+. — CyoH1gN40- (346.4)1 calcd. C 69.35,
H 5.24, N 16.17; found C 69.19, H 5.26, N 16.07.

Analytical data of 10: Yield: 333 mg (89 %), orange solid.
- IH NMR (250.13 MHz, CD,Cl,): § = 12.45 (s, 2 H,
OH), 8.52 (d, 3JHH = 5.0 Hz, 2 H, py-H6), 8.25 (s, 2 H,
HC=N), 7.60 (vt, 3JHH = 7.8 Hz, 2 H, py-H4), 7.15 (m, 4 H,
py-H3,5), 6.75 (s, 2 H, CH), 4.02, 3.15 (2 t, 3JHH = 7.1 Hz,
2x 4 H, CHy). - 13C NMR (62.9 MHz, CD,Cl,): § = 165.2
(C=N), 159.6 (py-C2), 152.9 (COH), 149.8 (py-C6), 136.5
(py-C4), 123.8 (py-C3 or 5), 121.7, 121.6 (CCHN, py-C3
or 5), 118.3 (CH), 59.6 (CHy), 39.5 (CHypy). — MALDI-
TOF-MS [positive ions, matrix: 2,5-dihydroxybenzoic acid
(DHB)]: m/z= 1374 [M] . - CopH2N40, - 0.5 H,0 (383.4):
calcd. C 68.91, H 6.05, N 14.61; found C 68.57, H 5.92,
N 14.60.

X-Ray crystal structure analyses

The single crystal X-ray measurements were performed
on a Siemens SMART CCD diffractometer using monochro-
mated Mo K, radiation. Repeatedly measured standard re-
flections remained stable. Numerical absorption corrections
were performed for 2 and 3, empirical absorption correc-
tions [20] were applied for 4, 6, 8, and 9. No absorption
correction was made for 10. The structures were determined
by Direct Methods using SHELXS-97 [21] and refined on
F2 values using the program SHELXL-97 [21]. H-atoms
were geometrically positioned and were constrained for 8
and 10. H-atom positions were taken from a difference
Fourier map and were refined for 2, 3, 4, 6, and 9.

CCDC-608824 (2), CCDC-608825 (3), CCDC-608826
(4), CCDC-608827 (6), CCDC-608828 (8), CCDC-608829
(9) and CCDC-608830 (10) contain the supplementary crys-
tallographic data for this paper. These data can be obtained
free of charge from The Cambridge Crystallographic Data
Centre via http://www.ccdc.cam.ac.uk/datarequest/cif.
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