Ternary Scandium-rich Indides $Sc_{50}T_{13}In_3$ and $Sc_{50}Rh_{13}In_3O_y$ (*T* = Rh, Ir; *y* \approx 8) – Synthesis and Crystal Structure

Roman Zaremba and Rainer Pöttgen

Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 30, D-48149 Münster, Germany

Reprint requests to R. Pöttgen. E-mail: pottgen@uni-muenster.de

Z. Naturforsch. 2007, 62b, 1567-1573; received August 31, 2007

New intermetallic compounds $Sc_{50}Rh_{13} In_{27}$ and $Sc_{50}Ir_{13} GIn_{24}$ and the suboxides Sc₄₉ 2Rh₁₃In₃ 8O_{8.8} and Sc₄₉ 2Rh₁₃ 7In₂ 8O_{8.0} were synthesized from the elements or with Sc₂O₃ as an oxygen source, respectively, in sealed tantalum tubes in a water-cooled sample chamber of an induction furnace. They crystallize with a new cubic structure type, space group Fm3, a =1772.5(6) pm, wR2 = 0.032, 1111 F^2 values, 34 variables for Sc₅₀Rh₁₃ ₃In₂₇, a = 1766.5(6) pm, wR2 = 0.041, 745 F^2 values, 34 variables for Sc₅₀Ir_{13.6}In_{2.4}, a = 1764.4(2) pm, wR2 = 0.044, 690 F^2 values, 41 variables for Sc₄₉ 2Rh₁₃In₃ 8O₈ 8, and a = 1761.5(6) pm, wR2 = 0.054, 740 F^2 values, 42 variables for Sc_{49.2}Rh_{13.7}In_{2.8}O_{8.0}. The main structural motifs are rhodium-centered indium cubes in an fcc like arrangement in which the octahedral and tetrahedral voids are filled by $In2Sc_{12}$ and $In1Sc_{12}$ icosahedra, respectively, resembling a Li₃Bi-like structure. The Rh1 (Ir1) and Sc4 atoms lie between these polyhedral units. The oxygen atoms partially fill Sc_6 octahedra in $Sc_{49} Rh_{13}In_{38}O_{88}$ and $Sc_{49} Rh_{13} In_{28}O_{80}$ with Sc–O distances of 214–230 pm. These octahedra are condensed via common edges and faces, encapsulating the $In2Sc_{12}$ icosahedra. Due to the high scandium content one observes strong Sc–Sc bonding with Sc–Sc distances ranging from 303 to 362 pm in Sc_{49.2}Rh₁₃In_{3.8}O_{8.8}. The shortest distances occur for Sc–Rh (267–295 pm). The crystal chemical relationship with the Li₃Bi-related suboxide $Ti_{12}Sn_3O_{10}$ is discussed.

Key words: Scandium, Intermetallics, Suboxides, Crystal Structure