Synthesis of New β -Lactam Analogs and Evaluation of Their Histone Deacetylase (HDAC) Activity

Seikwan Oh^a, Jae-Chul Jung^b, and Mitchell A. Avery^c

^a Department of Neuroscience and Medical Research Institute, School of Medicine, Ewha Womans University, Seoul 158-710, South Korea

^b Ewha Global Challenge, BK21 and Medical Research Institute, School of Medicine, Ewha Womans University, Seoul 158-710, South Korea

^c Department of Medicinal Chemistry, School of Pharmacy, National Center for Natural Products Research & Department of Chemistry, University of Mississippi, University, MS 38677-1848, USA

Reprint requests to Dr. Jae-Chul Jung. Fax: +82-02-2650-5791. E-mail: jcjung@ewha.ac.kr

Z. Naturforsch. 2007, 62b. 1459 – 1464; received April 16, 2007

A simple synthesis of the β -lactams 11-13 and 16-17 as novel histone deacetylase (HDAC) inhibitors is described. The key synthetic strategies involved the O-alkylation of 6-APA and the coupling reactions of freshly prepared N-carbobenzyloxy-L-prolines $\mathbf{5}$ and $\mathbf{6}$ and 6-aminopenicillanates $\mathbf{8}-\mathbf{10}$ and $\mathbf{15}$ in high yields. It was found that all compounds show potent growth inhibitory activity on human tumor cell lines, the most potent compound $\mathbf{16}$ exhibiting an $IC_{50} = 2.1 \ \mu M$ in vitro.

Key words: β-Lactams, Histone Deacetylase, Coupling Reaction, Anticancer, Synthesis