Solid-state ¹⁷O NMR Study of Small Biological Compounds

Kazuhiko Yamada^a, Tadashi Shimizu^b, Mitsuru Yoshida^c, Miwako Asanuma^a, Masataka Tansho^b, Takahiro Nemoto^d, Toshio Yamazaki^a, and Hiroshi Hirota^a

- ^a RIKEN Genomic Sciences Center, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045 Japan
- ^b Tsukuba Magnet Laboratory, National Institute for Materials Science, 3-13 Sakura, Tsukuba, 305-0003 Japan
- ^c Analytical Science Division, National Food Research Institute, 2-1-12 Kannondai, Tsukuba, 305-8642 Japan
- ^d Analytical R&D team NM/ER Group, Analytical Instrument Division, JEOL Ltd, 3-1-2 Musashino Akishima, Tokyo, 189-8558 Japan

Reprint requests to Dr. K.Yamada. Fax: +81-45-503-9228. E-mail: kyamada@gsc.riken.jp

Z. Naturforsch. 2007, 62b, 1422-1432; received April 6, 2007

We present a systematic experimental and theoretical investigation of the oxygen chemical shielding and electric-field-gradient tensors in polycrystalline amino acids and a peptide. Analysis of the ¹⁷O magic-angle-spinning (MAS), multiple-quantum MAS, and stationary nuclear magnetic resonance (NMR) spectra yield the magnitudes and the relative orientations between the two NMR tensors. The obtained ¹⁷O NMR parameters are sensitive to the hydrogen bond environments. We also demonstrate that solid-state ¹⁷O NMR is potentially useful for studying the secondary structures of peptides and proteins.

Key words: Solid-state ¹⁷O NMR, Electric-field-gradient Tensor, Chemical Shielding Tensor, Amino Acid, Peptide