New Indium-rich Indides $SrTIn_4$ (T = Ni, Pd, Pt)

Ihor Muts^a, Vasyl' I. Zaremba^b, Volodymyr V. Baran^b, and Rainer Pöttgen^a

^a Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 30, D-48149 Münster, Germany

^b Inorganic Chemistry Department, Ivan Franko National University of Lviv, Kyryla and Mephodiya Street 6, 79005 Lviv, Ukraine

Reprint requests to R. Pöttgen. E-mail: pottgen@uni-muenster.de

Z. Naturforsch. 2007, 62b, 1407-1410; received June 15, 2007

The indium-rich indides $SrTIn_4$ (T = Ni, Pd, Pt) were synthesized from the elements by arcmelting and subsequent annealing at 670 K ($SrNiIn_4$) or by induction melting in sealed tantalum tubes. The three samples were investigated by powder and single crystal X-ray diffractometer data: $YNiAl_4$ -type, space group *Cmcm*, a = 448.1(1), b = 1707.3(3), c = 732.6(1) pm, wR2 = 0.067, 717 F^2 values for SrNiIn₄, a = 454.7(2), b = 1708.8(4), c = 750.1(2) pm, wR2 = 0.056, 746 F^2 values for SrPdIn₄, and a = 455.6(2), b = 1706.4(9), c = 748.7(4) pm, wR2 = 0.055, 508 F^2 values for SrPtIn₄ with 24 variables per refinement. The transition metal and indium atoms build up complex threedimensional [TIn_4] polyanionic networks in which the strontium atoms fill distorted hexagonal channels. The indium atoms show distorted *bcc* indium cubes with short In–In distances as substructures within the [TIn_4] networks. Each transition metal atom has seven nearest indium neighbors: 257 – 275 pm Ni–In in SrNiIn₄ and 267 – 281 pm Pd–In and Pt–In in SrPdIn₄ and SrPtIn₄, respectively.

Key words: Intermetallics, Indium, Alkaline Earth Compounds