New Indium-rich Indides SrTIn$_4$ ($T = \text{Ni, Pd, Pt}$)

Ihor Mutsa, Vasyl’ I. Zarembab, Volodymyr V. Baranb, and Rainer Pöttgena

a Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 30, D-48149 Münster, Germany

b Inorganic Chemistry Department, Ivan Franko National University of Lviv, Kyryla and Mephodiya Street 6, 79005 Lviv, Ukraine

Reprint requests to R. Pöttgen. E-mail: pottgen@uni-muenster.de

The indium-rich indides SrTIn$_4$ ($T = \text{Ni, Pd, Pt}$) were synthesized from the elements by arc-melting and subsequent annealing at 670 K (SrNiIn$_4$) or by induction melting in sealed tantalum tubes. The three samples were investigated by powder and single crystal X-ray diffractometer data: YNiAl$_4$-type, space group $Cmcm$, $a = 448.1(1)$, $b = 1707.3(3)$, $c = 732.6(1)$ pm, $wR^2 = 0.067$, 717 F^2 values for SrNiIn$_4$, $a = 454.7(2)$, $b = 1708.8(4)$, $c = 750.1(2)$ pm, $wR^2 = 0.056$, 746 F^2 values for SrPdIn$_4$, and $a = 455.6(2)$, $b = 1706.4(9)$, $c = 748.7(4)$ pm, $wR^2 = 0.055$, 508 F^2 values for SrPtIn$_4$ with 24 variables per refinement. The transition metal and indium atoms build up complex three-dimensional [TIn$_4$] polyanionic networks in which the strontium atoms fill distorted hexagonal channels. The indium atoms show distorted bcc indium cubes with short In–In distances as substructures within the [TIn$_4$] networks. Each transition metal atom has seven nearest indium neighbors: 257 – 275 pm Ni–In in SrNiIn$_4$ and 267 – 281 pm Pd–In and Pt–In in SrPdIn$_4$ and SrPtIn$_4$, respectively.

Key words: Intermetallics, Indium, Alkaline Earth Compounds