$Ba_{3}YRu_{0.73(2)}Al_{1.27(2)}O_{8} \ and \ Ba_{5}Y_{2}Ru_{1.52(2)}Al_{1.47(2)}O_{13.5}\text{:}$

New Perovskite Ruthenates with Partial Octahedra Replacement

Barbara Schüpp-Niewa^{a,b}, Larysa Shlyk^{a,c}, Yurii Prots^d, Gernot Krabbes^a, and Rainer Niewa^b

- ^a IFW-Dresden, Leibniz-Institut für Festkörper- und Werkstoffforschung, Helmholtzstraße 20, 01069 Dresden, Germany
- ^b Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
- ^c Department Physics & Astronomy, University of Kentucky, Lexington, KY 40506, USA
- ^d Max-Planck-Institut f
 ür Chemische Physik fester Stoffe, Nöthnitzer Straße 40, 01187 Dresden, Germany

Reprint requests to Prof. Dr. Rainer Niewa. Fax: +49 (89) 289 13762. E-mail: rainer.niewa@ch.tum.de

Z. Naturforsch. 2007, 62b, 1383 – 1389; received June 11, 2007

Dark red single crystals of the new phases $Ba_3YRu_{0.73(2)}Al_{1.27(2)}O_8$ and $Ba_5Y_2Ru_{1.52(2)}Al_{1.47(2)}O_{13.5}$ have been grown from powder mixtures of $BaCO_3$, Y_2O_3 , Al_2O_3 , and RuO_2 . The compositions given in the formulas result from the refinements of the crystal structures based on single crystal X-ray diffraction data (hexagonal $P6_3/mmc$ (No. 194), Z=2, $Ba_3YRu_{0.73(2)}Al_{1.27(2)}O_8$: a=5.871(1), c=14.633(3) Å, R1=0.035, wR2=0.069 and $Ba_5Y_2Ru_{1.52(2)}Al_{1.47(2)}O_{13.5}$: a=5.907(1), c=24.556(5) Å, R1=0.057, wR2=0.114). $Ba_3YRu_{0.73(2)}Al_{1.27(2)}O_8$ crystallizes in a 6H perovskite structure, $Ba_5Y_2Ru_{1.52(2)}Al_{1.47(2)}O_{13.5}$ has been characterized as a 10H Perovskite. Due to similar spatial extensions of (Ru₂O₉) facesharing pairs of octahedra and (Al_2O_7) vertex-sharing pairs of tetrahedra, both structures show partial mutual substitution of these units. Consequently, the title compounds may be written as $Ba_3Y(Ru_2O_9)_{1-x}(Al_2O_7)_x$, x=0.64(1) and $Ba_5Y_2RuO_6(Ru_2O_9)_{1-x}(Al_2O_7)_x$, x=0.74(1). This interpretation is supported by the results of electron probe microanalysis using wavelength-dispersive X-ray spectroscopy. An oxidation state of Ru close to +5 for the (Ru_2O_9) units, as can be derived from the distances d(Ru-Ru), additionally leads to similar charges of both the (Ru_2O_9) and the (Al_2O_7) units.

Key words: Crystal Structure, Solid State Synthesis, Ruthenium, Perovskite