Sr₃Al₂Ge₄, Ca₁₀Al₆Ge₉ und Ca₂₀Al₆Ge₁₃. Neue Aluminium-Germanide

Sr₃Al₂Ge₄, Ca₁₀Al₆Ge₉ and Ca₂₀Al₆Ge₁₃. New Aluminium Germanides

Marco Wendorff und Caroline Röhr

Institut für Anorg. und Analyt. Chemie, Univ. Freiburg, Albertstr. 21, D-79104 Freiburg, Germany

Reprint requests to Prof. Dr. C. Röhr. E-mail: caroline@ruby.chemie.uni-freiburg.de

Z. Naturforsch. **2007**, 62b, 1071 – 1082; received February 24, 2007

In the ternary systems Ca-Al-Ge and Sr-Al-Ge three germanides with new structure types have been synthesized from stoichiometric ratios of the elements. Their crystal structures were determined using single crystal X-ray data. In the structure of $Sr_3Al_2Ge_4$ (monoclinic, space group C2/m, a =1267.6(4), b = 416.2(2), c = 887.4(3) pm, $\beta = 110.37(2)^{\circ}$, Z = 2, R1 = 0.0354) Al-Ge sheets with Al in tetrahedral (i. e. Al⁻) and Ge in threefold ψ -tetrahedral (i. e. Ge⁻) coordination against Ge are present. Thus, the compound can be classified as an electron precise Zintl phase. This finding is verified by the result of a band structure calculation (within the FP-LAPW approach), that shows a distinct minimum of the total density of states at the Fermi level. The structure of Ca₁₀Al₆Ge₉ (trigonal, space group $R\bar{3}m$, a = 1398.45(14), c = 2107.4(3) pm, Z = 6, R1 = 0.0613) contains complicated sheets of trigonal planar building units [AlGe₃] and [AlGe₄] tetrahedra. The compound Ca₂₀[Al₃Ge₆]₂[Ge] (hexagonal, space group $P6_3/m$, a = 1600.9(2), c = 458.48(7) pm, Z = 1, R1 = 0.0282) shows two planar trimers of [AlGe₃] triangles of formula [Al₃Ge₆] besides isolated Ge atoms (i. e. Ge⁴⁻). The overall electron count of the latter compounds, that contain trigonal planar coordinated Al atoms and considerable multiple bond character of the Al-Ge bonds, shows a very small deviation from the Zintl concept, comparable to the one observed in other aluminium-germanides like SrAlGe.

Key words: Aluminium, Germanium, Zintl Phases