Low-temperature Properties of U₂Co₂InH_{1.9}

Ladislav Havela^a, Khrystyna Miliyanchuk^{a,b}, Laura C. J. Pereira^c, and Eva Šantavá^d

- ^a Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
- ^b Department of Inorganic Chemistry, Faculty of Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya 6, 79005 Lviv, Ukraine
- ^c Departamento do Quimica, InstitutoTechnólogico e Nuclear/CFMC-UL, P-2686-953, Sacavém, Portugal
- ^d Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, Czech Republic

Reprint requests to Prof. L. Havela. E-mail: havela@mag.mff.cuni.cz

Z. Naturforsch. 2007, 62b, 977-981; received April 5, 2007

Dedicated to Dr. Bernard Chevalier on the occasion of his 60th birthday

U₂Co₂InH_{1.9}, synthesized by high-pressure hydrogenation of U₂Co₂In, crystallizes in the tetragonal structure similar to the parent compound, expanded by 8.4%. Although U₂Co₂In is a weak paramagnet, its hydride shows properties suggesting a proximity to the magnetic order. Its magnetic susceptibility exhibits a maximum at T = 2.4 K, ascribed to spin fluctuations. Magnetization at low temperatures goes through a metamagnetic transition between 2–3 T. The specific heat characteristics, with a pronounced upturn of C_p/T vs. T at low temperatures which can be fitted using an additional $-T^{1/2}$ term, resemble the behaviour of U₂Co₂Sn. The γ coefficient of the electronic specific heat, reaching 244 mJ mol⁻¹ K⁻², is gradually suppressed by high magnetic fields.

Key words: Uranium, Hydrides, Magnetism