Rare Earth-rich Magnesium Compounds $R E_{4} \mathbf{R h M g}$ ($R E=\mathbf{Y}, \mathrm{La}-\mathrm{Nd}, \mathrm{Sm}, \mathrm{Gd}-\mathrm{Tm}, \mathrm{Lu})$

Selcan Tuncel ${ }^{\text {a }}$, Ute Ch. Rodewald ${ }^{\text {a }}$, Bernard Chevalier ${ }^{\text {b }}$, and Rainer Pöttgen ${ }^{\text {a }}$
${ }^{\text {a }}$ Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, 48149 Münster, Germany
${ }^{\mathrm{b}}$ Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), CNRS [UPR 9048], Université Bordeaux 1, 87 avenue du Docteur Albert Schweitzer, 33608 Pessac Cedex, France

Reprint requests to R. Pöttgen. E-mail: pottgen@uni-muenster.de
Z. Naturforsch. 2007, 62b, 642-646; received December 20, 2006

The series of magnesium compounds $R E_{4} \mathrm{RhMg}(R E=\mathrm{Y}, \mathrm{La}-\mathrm{Nd}, \mathrm{Sm}, \mathrm{Gd}-\mathrm{Tm}, \mathrm{Lu})$ was prepared by high-frequency melting of the elements in sealed tantalum tubes. All samples were investigated by powder X-ray diffraction. The structures with $R E=\mathrm{Sm}, \mathrm{Gd}, \mathrm{Dy}, \mathrm{Ho}$, and Er as rare earth metal components were refined from single crystal diffractometer data: Gd_{4} RhIn-type, $F \overline{4} 3 \mathrm{~m}, Z=$ $16, a=1392.1(1) \mathrm{pm}, w R 2=0.060,616 F^{2}$ values, 19 variables for $\mathrm{Sm}_{4} \mathrm{RhMg}, a=1380.8$ (2) pm , $w R 2=0.071,530 F^{2}$ values, 19 variables for $\mathrm{Gd}_{4} \mathrm{RhMg}, a=1366.9(1) \mathrm{pm}, w R 2=0.070,594$ F^{2} values, 20 variables for $\mathrm{Dy}_{4} \mathrm{RhMg}, a=1355.7(2) \mathrm{pm}, w R 2=0.077,578 F^{2}$ values, 20 variables for $\mathrm{Ho}_{3.52} \mathrm{RhMg}_{1.48}$, and $a=1355.4(2) \mathrm{pm}, w R 2=0.075,559 F^{2}$ values, 20 variables for $\mathrm{Er}_{3.94} \mathrm{RhMg}_{1.06}$. The rhodium atoms have slightly distorted trigonal prismatic rare earth coordination. Condensation of the $\operatorname{Rh} R E_{6}$ prisms leads to a three-dimensional network which leaves large voids that are filled by regular Mg_{4} tetrahedra with a $\mathrm{Mg}-\mathrm{Mg}$ distance of 312 pm in $\mathrm{Sm}_{4} \mathrm{RhMg}$. The magnesium atoms have twelve nearest neighbors $(3 \mathrm{Mg}+9 R E)$ in icosahedral coordination. In the structures with holmium and erbium, the $R E 1$ positions which are not involved in the trigonal prismatic network exhibit $R E 1 / \mathrm{Mg}$ mixing. Shortest distances occur for $\mathrm{Sm}-\mathrm{Rh}(286 \mathrm{pm})$ within the rigid three-dimensional network of condensed trigonal prisms.

