Rare Earth-rich Magnesium Compounds *RE*₄RhMg (*RE* = Y, La–Nd, Sm, Gd–Tm, Lu)

Selcan Tuncel^a, Ute Ch. Rodewald^a, Bernard Chevalier^b, and Rainer Pöttgen^a

^a Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, 48149 Münster, Germany

^b Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), CNRS [UPR 9048], Université Bordeaux 1, 87 avenue du Docteur Albert Schweitzer, 33608 Pessac Cedex, France

Reprint requests to R. Pöttgen. E-mail: pottgen@uni-muenster.de

Z. Naturforsch. 2007, 62b, 642-646; received December 20, 2006

The series of magnesium compounds RE_4 RhMg (RE = Y, La–Nd, Sm, Gd–Tm, Lu) was prepared by high-frequency melting of the elements in sealed tantalum tubes. All samples were investigated by powder X-ray diffraction. The structures with RE =Sm, Gd, Dy, Ho, and Er as rare earth metal components were refined from single crystal diffractometer data: Gd₄RhIn-type, $F\overline{4}3m$, Z =16, a = 1392.1(1) pm, wR2 = 0.060, 616 F^2 values, 19 variables for Sm₄RhMg, a = 1380.8(2) pm, wR2 = 0.071, 530 F^2 values, 19 variables for Gd₄RhMg, a = 1366.9(1) pm, wR2 = 0.070, 594 F^2 values, 20 variables for Dy₄RhMg, a = 1355.7(2) pm, wR2 = 0.077, 578 F^2 values, 20 variables for Ho_{3.52}RhMg_{1.48}, and a = 1355.4(2) pm, wR2 = 0.075, 559 F^2 values, 20 variables for Er_{3.94}RhMg_{1.06}. The rhodium atoms have slightly distorted trigonal prismatic rare earth coordination. Condensation of the Rh RE_6 prisms leads to a three-dimensional network which leaves large voids that are filled by regular Mg₄ tetrahedra with a Mg–Mg distance of 312 pm in Sm₄RhMg. The magnesium atoms have twelve nearest neighbors (3 Mg + 9 RE) in icosahedral coordination. In the structures with holmium and erbium, the RE1 positions which are not involved in the trigonal prismatic network exhibit RE1/Mg mixing. Shortest distances occur for Sm–Rh (286 pm) within the rigid three-dimensional network of condensed trigonal prisms.

Key words: Magnesium, Intermetallics, Crystal Chemistry