\(RE_{2+x}I_2M_{2+y} (RE = Ce, Gd, Y; M = Al, Ga) \): Reduced Rare Earth Halides with a Hexagonal Metal Atom Network

Mar’yana Lukachuka\(^a\), Chong Zheng\(^b\), Hansjürgen Mattausch\(^a\), Michael G. Banks\(^a\), Reinhard K. Kremer\(^a\), and Arndt Simon\(^a\)

\(^a\) Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany
\(^b\) Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA

Reprint requests to C. Zheng and A. Simon.
E-mail: zheng@cz.chem.niu.edu and A.Simon@fkf.mpg.de

The title compounds were synthesized from \(RE, REI_3 (RE = Ce, Gd, Y) \) and Al or Ga under an Ar atmosphere at 930 – 950 °C. The non-stoichiometric \(Ce_{2+x}I_2Al_{2+y} \) and \(Ce_{2+x}I_2Ga_{2+y} \) compounds crystallize in the space group \(R\bar{3}m \) (No. 166) with lattice constants \(a = 4.3645(3), c = 35.914(2) \) Å for the Al and \(a = 4.3009(2), c = 35.680(4) \) Å for the Ga compound. Excess electron density found in the Wyckoff position 3a could be due to a fractional occupation by Ce or \(M \) (\(x = 0.06, y = 0 \) or \(x = 0, y = 0.11 \) in the case of the Ga compound). The stoichiometric \(Gd_2I_2Ga_2 \) and \(Y_2I_2Ga_2 \) compounds crystallize in the space group \(P\bar{3}m1 \) (No. 164) with lattice constants \(a = 4.1964(1) \) and 4.1786(7) Å, \(c = 11.4753(4) \) and 11.434(2) Å, respectively. Their structures feature \(M \)-centered \((M = Al, Ga) \) \(RE \) trigonal prisms condensed via common rectangular faces. The electronic origin of the surplus of metal atoms in the octahedral voids between the I-layers of the Ce compounds was explored via extended Hückel-type calculations. Magnetic susceptibility, electrical resistivity and heat capacity measurements have also been carried out. These reveal a metal-insulator transition of \(Gd_2I_2Ga_2 \) at 40 K.

Key words: Cerium, Gadolinium, Yttrium, Aluminum, Gallium, Reduced Halide