Synthesis and Characterization of New Diiron and Diruthenium μ -Aminocarbyne Complexes Containing Terminal S-, P- and C-Ligands

Vincenzo G. Albano^b, Luigi Busetto^a, Fabio Marchetti^a, Magda Monari^b, Stefano Zacchini^a, and Valerio Zanotti^a

^a Dipartimento di Chimica Fisica e Inorganica, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy

^b Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126 Bologna, Italy

Reprint requests to Prof. Luigi Busetto. E-mail: luigi.busetto@unibo.it

Z. Naturforsch. 2007, 62b, 427-438; received November 2, 2006

Dedicated to Prof. Helgard G. Raubenheimer on the occasion of his 65th birthday

The diiron aminocarbyne complexes $[Fe_2 \{\mu-CN(Me)(R)\}(\mu-CO)(CO)(NCMe)(Cp)_2][SO_3CF_3]$ (R = Xy), **1a**; R = Me, **1b**; $R = CH_2Ph$, **1c**; $Xyl = 2.6-Me_2C_6H_3$) undergo replacement of the coordinated nitrile by halides, diethyldithiocarbamate, and dicyanomethanide to give $[Fe_2\{\mu-CN(Me)\}]$ (R) {(μ -CO)(CO)(X)(Cp)₂] complexes ($R = Me, X = Br, 4a; R = Me, X = I, 4b; R = CH₂Ph, A = I, 4b; R = CH_2$ Cl, 4c; $R = CH_2Ph$, X = Br, 4d; $R = CH_2Ph$, X = I, 4e; R = Xyl, $X = SC(S)NEt_2$, 5a; R = Me, $X = CH_2Ph$, X = I, 4c; R = Xyl, $X = SC(S)NEt_2$, 5a; R = Me, X = I, 4c; R = Xyl, $X = SC(S)NEt_2$, 5a; R = Me, X = I, 4c; R = Xyl, $X = SC(S)NEt_2$, 5a; R = Me, X = I, 4c; R = Xyl, $X = SC(S)NEt_2$, 5a; R = Me, X = I, 4c; R = Xyl, $X = SC(S)NEt_2$, 5a; R = Me, X = I, 4c; R = Xyl, $X = SC(S)NEt_2$, 5a; R = Me, X = I, 4c; R = Xyl, $X = SC(S)NEt_2$, 5a; R = Me, X = I, 4c; R = Xyl, $X = SC(S)NEt_2$, 5a; R = Me, X = I, 4c; R = Xyl, $X = SC(S)NEt_2$, 5a; R = Me, X = I, 4c; R = Xyl, $X = SC(S)NEt_2$, 5a; R = Me, X = I, 4c; R = Xyl, 4c; R = Xyl, 4c; $R = SC(S)NEt_2$, 5a; R = Me, 4c; R = Xyl, 4c; $R = SC(S)NEt_2$, 5a; R = Me, 4c; $R = SC(S)NEt_2$, 5a; R = Me, 5d; R = Me, 5d; R = Me, 5d; R = Me, 5d; R = Me, 7d; R = Me, $SC(S)NEt_2$, **5b**; R = Xyl, $X = CH(CN)_2$, **7**), in good yields. The molecular structure of **5a** shows an unusual n^1 coordination mode of the dithiocarbamate ligand. Similarly, treatment of $[M_2 \{\mu$ -CN(Me) (R) {(μ -CO)(CO)(NCMe)(Cp)₂][SO₃CF₃] (M = Fe, R = Xyl, **1a**; M = Fe, R = Me, **1b**; M = Ru, R = Xyl, **2a**; M = Ru, R = Me, **2b**) with a series of phosphanes generates the cationic complexes $[M_2 \{\mu - \lambda \}]$ CN(Me)(R){(μ -CO)(CO)(P)(Cp)₂][SO₃CF₃] (M = Fe, R = Xyl, P = PPh₂H, **6a**; M = Fe, R = Xyl, $P = PPh_3$, **6b**; M = Fe, R = Xyl, $P = PMe_3$, **6c**; M = Fe, R = Me, $P = PMe_2Ph$, **6d**; M = Fe, R = Me, $P = PPh_3$, **6e**; M = Fe, R = Me, $P = PMePh_2$, **6f**; M = Ru, R = Xyl, $P = PPh_2H$, **6g**; M = Ru, R =Me, $P = PPh_2H$, **6h**), in high yields. The molecular structure of **6a** has been elucidated by an X-ray diffraction study. The reactions of $[Fe_2 \{ \mu - CN(Me)(Xyl) \} (\mu - CO)(CO)(NCR')(Cp)_2][SO_3CF_3] [R' =$ Me, 1a; R' = tBu, 3] with PhLi and PPh₂Li yield [Fe₂{ μ -CN(Me)(Xyl}](μ -CO)(CO)(Ph)(Cp)₂] (8) and $[Fe_2\{\mu-CN(Me)(Xyl)\}(\mu-CO)(CO)(PPh_2)(Cp)_2]$ (9), respectively. The molecular structure of 8 has been ascertained by X-ray diffraction. Conversely, the reaction of **1a** with MeLi generates the aminoalkylidene compound [Fe₂{C(Me)N(Me)(Xyl)}(μ -CO)₂(CO)(Cp)₂] (10).

Key words: Diiron Complexes, Carbyne, Alkynyl, Nitrile Ligands, Crystal Structures