The Affinity of Indium(III) for Nitrogen-donor Ligands in Aqueous Solution. A Study of the Complexing of Indium(III) with Polyamines by Differential Pulse Voltammetry, Density Functional Theory, and Crystallography

James M. Harrington^a, Karen A. Oscarson^a, S. Bart Jones^a, Joseph H. Reibenspies^b, Libero J. Bartolotti^c, and Robert D. Hancock^a

Reprint requests to Prof. R. D. Hancock. E-mail: hancockr@uncw.edu

Z. Naturforsch. 2007, 62b, 386 – 396; received November 1, 2006

Dedicated to Prof. Helgard G. Raubenheimer on the occasion of his 65th birthday

The affinity of In(III) for N-donor ligands was investigated by differential pulse voltammetry. DFT calculations, and crystallography. The structure of [In(tpen)(CH₃COO)](ClO₄)₂ · 0.5 H₂O (1) is reported (tpen = N, N, N', N'-tetrakis(2-pyridylmethyl)ethylenediamine): Monoclinic, $P2_1/n$, a =8.687(4), b = 7.767(8), c = 20.432(10) Å, $\beta = 93.372(8)^{\circ}$, Z = 4, R = 0.0518. The In(III) center is 7-coordinate, with six In-N bonds to the tpen ligand in the range 2.306 – 2.410 Å, and a unidentate acetate group with In-O = 2.247 Å. The formation constants of In³⁺ in 0.1 M NaNO₃ at 25 °C are (M = In(III), L = ligand, H = proton): L = triethylenetetramine, $\log \beta$ (MLH₂) = 25.3 \pm 0.3, $\log K_1$ = 14.43 ± 0.09 , and $\log \beta(\text{ML}(\text{OH})_2) = 27.7 \pm 0.1$; tetraethylenepentamine, $\log \beta(\text{MLH}) = 20.8 \pm 0.2$, and ML (log β (ML) = 20.1 \pm 0.3); diglycolic acid, (log β (MLH) = 8.06 \pm 0.06), log K_1 = 6.02 \pm 0.06, $\log \beta_2 = 9.40 \pm 0.08$; tpen, $\log K_1 = 17.71 \pm 0.07$; N, N'-bis(2-pyridylmethyl)ethylenediamine, $\log K_1 = 14.69 \pm 0.05$; 1,10-phenanthroline, $\log K_1 = 6.81 \pm 0.07$, $\log K_2 = 6.44 \pm 0.07$, $\log K_3 =$ 6.20 ± 0.08 . Correlations are shown between the determined formation constants for the polyamines and $\log K_1(\mathrm{NH}_3)$ values for a wide variety of metal ions. For M(II) ions, the $\log K_1(\mathrm{NH}_3)$ values are experimental data, but for M(III) ions the data are predicted by an empirical dual-basicity equation, including $\log K_1(\text{NH}_3) = 4.0$ for In(III). DFT calculations are used to obtain ΔE for the reaction $[M(H_2O)_6]^{n+}$ + NH₃ \rightleftharpoons $[M(H_2O)_5NH_3]^{n+}$ + H₂O for M(II) through M(IV) ions in water, represented as a structureless medium with the dielectric constant of water. Correlations are found that support the predicted value of $\log K_1(NH_3)$ for In(III) of 4.0. The nature of the intercepts on such correlations are discussed.

Key words: Indium, Formation Constants, Polarography, Nitrogen Donor Ligands

^a Department of Chemistry and Biochemistry, University of North Carolina at Wilmington, Wilmington, NC 28403, USA

^b Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA

^c Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, USA