The Synthesis of Copper(II) Salicylaldiminato Complexes and their Catalytic Activity in the Hydroxylation of Phenol

Juanita L. van Wyk^a, Selwyn Mapolie^a, Anders Lennartson^b, Mikael Håkansson^b, and Susan Jagner^c

- ^a Chemistry Department, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
- ^b Department of Chemistry, Göteborg University, SE-412 96 Göteborg, Sweden
- ^c Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

Reprint requests to S. Mapolie. E-mail: smapolie@uwc.ac.za

Z. Naturforsch. 2007, 62b, 331 – 338; received November 13, 2006

Dedicated to Prof. Helgard G. Raubenheimer on the occasion of his 65th birthday

The synthesis of copper(II) salicylaldiminato complexes and their application in the catalytic hydroxylation of phenol is reported. Tetracoordinated copper complexes ($Cu(L^n)_2$) were obtained by reacting the N-phenylsalicylaldimine ligands ($HL^1 - HL^7$) with copper acetate in a 2:1 mole ratio. The reaction of N-(2,6-diisopropyl)phenyl-3,5-di-*tert*-butylsalicylaldimine (HL^7) with copper acetate in a 1:1 mole ratio afforded a dinuclear complex, which was not obtained with the other ligand systems. All complexes were characterized using FT-IR and elemental analysis. X-Ray crystal structures of complexes 2, 5 and 8 have also been obtained. The catalytic activity of these complexes was evaluated in the hydroxylation of phenol using oxygen and hydrogen peroxide as co-oxidants in aqueous media in the pH range 3-6. All complexes studied were found to be active for the hydroxylation process over the pH range studied with higher selectivity for catechol formation.

Key words: Salicylaldimine, Tetracoordinated Copper(II) Complexes, Hydroxylation, Phenol