Spin-Spin Coupling Constants ¹ J(¹⁵N, ¹¹B) in Boron-Nitrogen **Compounds. Experimental Data and DFT Calculations**

Boron-nitrogen compounds were studied with respect to indirect nuclear ¹⁵N-¹¹B spin-spin coupling $({}^{1}J({}^{15}N, {}^{11}B))$. Some new experimental data were determined for aminoboranes and tetra-Npyrrolylborate, and a variety of compounds with B-N single, double and triple bonds were examined using DFT methods for the calculation of ${}^{1}J({}^{15}N, {}^{11}B)$ at the B3LYP/6-311+G(d,p) level of theory.

Bernd Wrackmeyer and Oleg L. Tok

Anorganische Chemie II, Universität Bayreuth, D-95440 Bayreuth, Germany

Reprint requests to Prof. Dr. B. Wrackmeyer, E-mail: b.wrack@uni-bayreuth.de

Z. Naturforsch. 2007, 62b, 220 – 224; received October 10, 2006

The calculations predict magnitude and sign of ${}^{1}J({}^{15}N, {}^{11}B)$ reasonably well, and the Fermi contact term was found to be dominant. A positive sign of ${}^{1}J({}^{15}N,{}^{11}B)$ was calculated in the case of 1-azacloso-dodecaborane(12), in contrast to all other compounds studied.

Kev words: ¹⁵N NMR, ¹¹B NMR, Boron-Nitrogen Compounds, Coupling Constants, **DFT Calculations**