Gemischte Erdalkalimetall-Trielide $A^{II}M1_x^{III}M2_{2-x}^{III}$ (A^{II} = Ca, Sr, Ba; M^{III} = Al, Ga, In). Strukturchemische und bindungstheoretische Untersuchungen Mixed Alkaline Earth Trielides $A^{II}M1_x^{III}M2_{2-x}^{III}$ (A^{II} = Ca, Sr, Ba; M^{III} =Al, Ga, In). A Structural and Theoretical Study Wiebke Harms, Marco Wendorff und Caroline Röhr Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany Sonderdruckanforderungen an Prof. Dr. C. Röhr. E-mail: caroline@ruby.chemie.uni-freiburg.de Z. Naturforsch. 2006, 62b, 177 – 194; eingegangen am 5. Oktober 2006 The binary alkaline earth trielides of the composition $A^{\rm II}M_2^{\rm III}$ exhibit a puzzling variety of structure types ranging from electron precise Zintl compounds like CaIn₂ and KHg₂ (both with networks of four-bonded M^- entities) and the AlB₂ structure type (with graphite analogue M sheets) to the cubic Laves phases e.g. of CaAl₂. The examination of the phase stabilities of mixed compounds $AM1_{1}^{11}M2_{2}^{11}$ of two trielides allows to separate the stability ranges in a structure map by taking the electronegativity differences of $M^{\rm III}$ and $A^{\rm II}$ ($\Delta \rm EN$) and the radius ratios (RR = $r_{\rm M}/r_{\Delta}$) into account: The CaIn₂-type is stable at comparatively large RR, for example over the whole range CaGa₂ – CaIn₂ and even up to CaAl_{0.6}Ga_{1.4} and CaAl_{1.2}In_{0.8}, and in SrIn₂, together with a limited substitution of In by Al or Ga. The KHg₂-type is observed in a region of lower RR: In BaIn₂, a substitution of In by 50 % Al and 30 % Ga is possible without a general structure change, in SrAl₂ this holds for a content of up to 50 % In. At high ΔEN and low RR values (e, g, Sr/Ba-Ga), the ideal AlB₂ structure type exhibits a distinct stability range; only for small RR around CaAl2 the MgCu2-type is stable. FP-LAPW band structure calculations of the binary trielides allow to explain the structural changes qualitatively. In the case of the electron precise phases forming the CaIn₂, KHg₂ or AlB₂ structure type, details of the bonding situation (such as M-M distances) as well as differences to other isoelectronic compounds can be rationalized taking the incomplete charge transfer from the alkaline earth towards the triel elements into account. This causes a partial depopulation of some of the bonding and a population of predominantly antibonding states. Key words: Trielides, Alkaline Earth, Band Structure Calculation, Structure Map