Magnetic and Electrical Properties of the Intermetallic Compounds RE_2Au_2Sn (RE = Y, Dy - Tm, Lu) and RE_2Au_2In (RE = Ho, Lu) Rainer Pöttgen^a, Reinhard K. Kremer^b, Sudhindra Rayaprol^a, Birgit Heying^a, and Rolf-Dieter Hoffmann^a ^a Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 30, D-48149 Münster, Germany ^b Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany Reprint requests to Prof. Dr. R. Pöttgen. E-mail: pottgen@uni-muenster.de Z. Naturforsch. **2007**, 62b, 169 – 172; received October 12, 2006 The intermetallic compounds RE_2Au_2Sn (RE = Y, Dy-Tm, Lu) and RE_2Au_2In (RE = Ho, Lu) were synthesized from the elements via arc-melting and subsequent annealing at 1070 K for 10 days. Depending on the size of the rare earth element, the compounds crystallize with the Mo_2B_2Fe -type (space group P4/mbm) or the Er_2Au_2Sn structure (space group P4/mmm), a superstructure of Mo_2B_2Fe . Temperature dependent susceptibility measurements of Y_2Au_2Sn , Lu_2Au_2Sn , and Lu_2Au_2In indicate Pauli paramagnetism compatible with the metallic behavior deduced from resistivity measurements. Ho_2Au_2In and RE_2Au_2Sn (RE = Dy-Tm) show Curie-Weiss behavior above 50 K with experimental magnetic moments close to the free ion values of the trivalent rare earth elements. The compounds Ho_2Au_2In , Dy_2Au_2Sn , Ho_2Au_2Sn , and Er_2Au_2Sn , undergo magnetic ordering at 20(1) (F), 16(1) (AF), 8(1) (AF), and 4.5(1) K (AF), respectively. Tm_2Au_2Sn remains paramagnetic down to 2 K. Key words: Solid State Synthesis, Magnetism, Electrical Resistivity