Crystal Structures and Thermal Behavior of Bis(dibenzyldimethylammonium) Tetrabromometallates(II) [M = Mn(II), Co(II) and Zn(II)] and Their Solvates Sara Busi^a, Roland Fröhlich^b, Manu Lahtinen^a, Reijo Sillanpää^a, and Kari Rissanen^a Reprint requests to S. Busi. Fax: +358 14 2602501. E-mail: gibusi@cc.jyu.fi Z. Naturforsch. 2007, 62b, 35-43; received August 14, 2006 Six new A_2MBr_4 structures [A = dibenzyldimethylammonium cation, M = Mn(II), Co(II) or Zn(II)] were crystallized with or without solvent molecules from acetonitrile, methanol and/or aqueous solutions. The isomorphous compounds [(Bz₂Me₂N)₂][MnBr₄]·CH₃CN·H₂O (1) and [(Bz₂Me₂N)₂]- $[ZnBr_4]\cdot CH_3CN\cdot H_2O$ (4) crystallize in the triclinic space group $P\bar{1}$ from acetonitrile solutions. The solvent molecules participate in the hydrogen bonding network inside the crystal structure. [(Bz₂Me₂N)₂][CoBr₄]·0.5CH₃CN (2) crystallizes from an acetonitrile solution in the monoclinic space group $P2_1/c$. The solvent molecules fill the voids of the crystal structure. Compound 2 is isostructural with the previously reported compounds $[(Bz_2Me_2N)_2][MCl_4] \cdot 0.5CH_3CN$ with M =Mn(II), Co(II), Ni(II), Cu(II) or Zn(II). $[(Bz_2Me_2N)_2][CoBr_4]$ (3) and $[(Bz_2Me_2N)_2][ZnBr_4]$ (5a) crystallize from a methanol solution in the monoclinic space group $P2_1/c$ without solvents. A polymorph of compound 5a, [(Bz₂Me₂N)₂][ZnBr₄] (5b), was crystallized from aqueous solution in the monoclinic space group $P2_1/c$. The packing of the components of the two polymorphs differs clearly. One cation of 5a appears in the W-conformation whereas the other cation of 5a and both cations of **5b** appear in twisted conformations. In addition to the ionic interactions between the ion pairs, the packing of the compounds is stabilized by hydrogen bonds and weak intermolecular π - π interactions in all cases. The compounds melt around 200 °C and decompose mainly in two steps just above the melting point. Slow evaporation of solvents is observed both in the TG and DSC diagrams of the solvates (1, 2 and 4) below 100 °C. Key words: Quaternary Ammonium Compound, Tetrabromometallate, Tetrahalometallate, X-Ray Single Crystal Diffraction, Thermal Analysis ^a Department of Chemistry, University of Jyväskylä, P.O.Box 35, FIN–40014 University of Jyväskylä, Finland ^b Organisch-Chemisches Institut, Universität Münster, Corrensstrasse 40, 48149 Münster, Germany