Structure, Magnetic Properties and 151Eu, 119Sn Mössbauer Spectroscopy of Eu$_5$Sn$_3$S$_{12}$ and Eu$_4$LuSn$_3$S$_{12}$

Petra Jakubcová, Dirk Johrendt, C. Peter Sebastian, Sudhindra Rayaprol, and Rainer Pöttgen

a Department Chemie und Biochemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5–13 (Haus D), D–81377 München, Germany

b Institut für Anorganische und Analytische Chemie and NRW Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 30, 48149 Münster, Germany

Reprint requests to Prof. Dr. D. Johrendt. E-mail: johrendt@lmu.de

Z. Naturforsch. 2007, 62b, 5 – 14; received August 21, 2006

Eu$_5$Sn$_3$S$_{12}$ and Eu$_4$LuSn$_3$S$_{12}$ were synthesized and their structures refined from single crystal data ($Pmc2_1$, Eu$_5$Sn$_3$S$_{12}$: $a = 3.908(1)$, $b = 20.115(4)$, $c = 11.451(2)$ Å; $wR2 = 0.0519$ for 3048 F^2 and 122 parameters; Eu$_4$LuSn$_3$S$_{12}$: $a = 3.920(1)$, $b = 20.132(4)$, $c = 11.459(2)$ Å; $wR2 = 0.0737$ for 3298 F^2 and 122 parameters). The structures contain one-dimensional chains of edge-sharing SnS$_2$S$_4$/2 octahedra and corner-sharing SnS$_3$S$_2$/2 trigonal bipyramids, running parallel to [100]. Five europium sites are seven- or eightfold coordinated by sulfur atoms. Lutetium atoms in Eu$_4$LuSn$_3$S$_{12}$ show a strong site preference for one of the two Eu$^{3+}$ positions of Eu$_5$Sn$_3$S$_{12}$ and no structural disorder was observed. Both compounds show static mixed valence according to Eu$^{2+}$3Eu$^{3+}$2Sn$^{4+}$3S$_{12}^-$ and Eu$^{2+}$3Lu$^{3+}$3Sn$^{4+}$2S$_{12}^-$, which was confirmed by temperature dependent magnetic susceptibility measurements. The experimental magnetic moments of 14.6(1) (Eu$_5$Sn$_3$S$_{12}$) and 14.1(1) (Eu$_4$LuSn$_3$S$_{12}$) μ_B/f.u. indicate that each of the two sulfides contains three divalent europium atoms per formula unit. Magnetic ordering for Eu$_5$Sn$_3$S$_{12}$ and Eu$_4$LuSn$_3$S$_{12}$ sets in below 5 and 3 K, respectively. Both sulfides show metamagnetic or spin-flip transitions in the magnetization curves at 3 K (2 K) with full saturation of the europium magnetic moments at 3 K (2 K) and 80 kOe. 151Eu Mössbauer spectra fully confirm the Eu$^{2+}$ and Eu$^{3+}$ site occupancies. At 4.2 K an increase in line width indicates small hyperfine fields at the europium nuclei.

Key words: Europium Compounds, Mixed Valence, Magnetism, Mössbauer Spectroscopy