Rb₂P₂S₆ – A New Alkali Thiophosphate: Crystal Structure and Vibrational Spectra of Rubidium Hexathiodiphosphate(V)

Mimoza Gjikaj, Claus Ehrhardt, and Wolfgang Brockner

Institute of Inorganic and Analytical Chemistry, Clausthal University of Technology, Paul-Ernst-Straße 4, D-38678 Clausthal-Zellerfeld, Germany

Reprint requests to Dr. M. Gjikaj. Fax: (+49)5323-722995. E-mail: mimoza.gjikaj@tu-clausthal.de

Z. Naturforsch. 61b, 1049 - 1053 (2006); received March 21, 2006

Single crystals of rubidium hexathiodiphosphate(V), Rb₂P₂S₆, have been obtained and investigated by single crystal X-ray diffraction, and IR/FIR and Raman spectroscopy. The title compound crystallizes isotypically to the potassium, caesium and thallium analogues in the orthorhombic space group *Immm* (no. 71) with a = 8.485(3), b = 6.953(3), c = 9.259(3) Å, and Z = 2, final R1 = 0.0579 and wR2 = 0.0987. The crystal structure is characterized by discrete $[P_2S_6]^{2-}$ anions (edge-sharing double-tetrahedra) with D_{2h} symmetry. Rubidium is coordinated by ten sulfur atoms forming a slightly distorted two-capped tetragonal prism with a coordination number CN_{Rb} 10. The FT-Raman and FT-IR/FIR spectra have been recorded and a factor group analysis was carried out.

Key words: Thiophosphate, Rb₂P₂S₆, Crystal Structure, Raman, IR

Introduction

The four known types of alkali thiophosphates, $Me_4P_2S_6$, $Me_2P_2S_6$, $Me_4P_2S_7$ and Me_3PS_4 , belong to the group of ionic thiophosphates. They may be prepared by high-temperature element syntheses dependent on stoichiometric and preparative conditions [1–3]. At higher temperature these thiophosphates are connected by coupled Lewis acid-base and redox equilibria:

$$P_2S_6^{4-} + S \rightleftharpoons P_2S_6^{2-} + S^{2-} \tag{1}$$

$$P_2S_6^{2-} \xrightarrow{S^{2-}} P_2S_7^{4-} \xrightarrow{S^{2-}} 2PS_4^{3-}$$
 (2)

The hexathiometadiphosphates (= hexathiodiphosphates(V)), $Me_2P_2S_6$, are of special interest because in the crystal structure there are discrete $P_2S_6^{2-}$ anions contrary to the polymeric structures of the oxo analogues, $(MPO_3)_n$. Only a few compounds, $Me_2P_2S_6$ with Me = Na, K, Cs, Tl and Ag have been described.

The thiophosphates of stoichiometry $MePS_3$ with Me = Na, Ag and Tl were first described by Thilo and Ladwig [4] who proposed a chain structure for these compounds in analogy to the corresponding meta-phosphates. Crystal structure determinations of the silver [5], thallium [6], potassium and caesium [7] thiophophates showed the $[P_2S_6]^{2-}$ ion as the structural unit therein. $Na_2P_2S_6$ and $Rb_2P_2S_6$ were synthesized

and characterized first by Menzel [8], but no single crystals could be obtained for structure determination.

Very recently, the crown-ether derivatives of $Na_2P_2S_6$ and $K_2P_2S_6$: $[K(18\text{-crown-6})]_2$ $[P_2S_6] \cdot 2\,\text{CH}_3\text{CN}$ [9,10] and $[Na(12\text{-crown-4})_2]_2$ $[P_2S_6] \cdot \text{CH}_3\text{CN}$ [11] have been synthesized and characterized by crystal structure determination and vibrational spectra.

Experimental Section

Synthesis

The light-yellow title compound was prepared by high-temperature synthesis from stoichiometric amounts of the elements (4 g charge) in evacuated and sealed quartz tubes [6,8]. To prevent a violent exothermic reaction it was important to have the Rb metal in an extra open quartz tube separated from the P and S components and to run a slow pre-reaction (50 °C/h) at <180 °C so that sulfide formation could take place \emph{via} the gas phase. Thereafter the reaction mixture was heated up to 800 °C (50 °C/h) and kept at this temperature for 8 h. Cooling with 50 °C/h yielded crystalline Rb2P2S6 (Fp: 462 °C [8]). As Rb2P2S6 is quickly hydrolyzed, all handling had to be done under a strictly inert atmosphere (glovebox, argon).

Determination of the crystal structure

A suitable single crystal of the title compound was selected under a polarization microscope and mounted in a

Table 1. Crystallographic data and details of the structure determination and refinement for Rb₂P₂S₆.

Empirical formula	Rb ₂ P ₂ S ₆
Crystal system	orthorhombic
Space group / Z	<i>Immm</i> (No. 71) / 2
a [Å]	8.485(3)
$b [\mathring{A}]$	6.953(3)
c [Å]	9.259(3)
$V[Å^3]$	546.2(3)
Calculated density [g/cm ³]	2.59
Measured temperature [K]	223
$\mu (\text{Mo-K}_{\alpha}) [\text{mm}^{-1}]$	10.2
Crystal size [mm ³]	$0.25\times0.22\times0.20$
Crystal colour	yellow
Diffractometer, scan mode	Stoe-IPDS 2, rotation at
	$\varphi = 0$ and 45°,
	$\omega = 2$, 150 frames,
_	IP distance 75 mm
Radiation Mo- K_{α} [Å]	0.71073, Graphite
	monochromator
θ [°]	2.0 - 26.0
$h_{\min}, h_{\max}, k_{\min}, k_{\max}, l_{\min}, l_{\max}$	-10,10; -8,8; -11,11
F(000)	400
Absorption correction	empirical
Independent reflections /	
$R_{\rm int.}/R_{\rm sigmaint.}$	3366 / 0.0997 / 0.0560
Reflections / parameters	899 / 78
Extinction coefficient	0.00125(2)
Goodness-of-Fit	1.124
$R(I > 2\sigma(I))$	R1 = 0.0566, wR2 = 0.0876
R (all data)	R1 = 0.0579, wR2 = 0.0987
Structure solution and refinement	SHELXS-97 and
T . 1.00 1 11 1	SHELXL-97 [13]
Largest difference peaks and hole	2.462 / -1.903

glass capillary (d = 0.3 mm, oil protection). Single crystal X-ray diffraction studies were performed on a Stoe IPDS II diffractometer with graphite-monochromated Mo- K_{α} radiation ($\lambda=0.71073$ Å) at 223 K. Crystal data and experimental conditions are given in Table 1. Intensity data were collected in the ϕ -scan mode. With the help of direct methods [12, 13] the atomic positions could be determined by successive refinement with Fourier syntheses including anisotropic displacement parameters (Table 2). For the structure drawings the programs DIAMOND [14] and POV-Ray TM [15] were used. Selected distances and angles are listed in the Table 3.

Raman and IR spectrum

The FT-Raman spectrum of the crystalline title compound was recorded with a Raman module FRA 106 (Nd:YAG laser, 1064 nm, > 200 mW) attached to a Bruker IFS 66v interferometer. The FT-IR/FIR spectra were obtained from KBr and PE pellets, respectively, with the same interferometer. All sample handling was done under strictly inert conditions in a dry nitrogen atmosphere.

Table 2. Atomic coordinates and equivalent isotropic displacement parameters / \mathring{A}^2 for $Rb_2P_2S_6$.

Atom	Site	х	у	Z	U_{eq}
Rb	4f	0.2388(1)	0	1/2	0.0292(5)
P	4j	1/2	0	0.1588(3)	0.0220(7)
S1	4e	0.3168(3)	0	0	0.0267(7)
S2	8 <i>l</i>	0	0.2565(2)	0.2319(6)	0.0291(6)

Table 3. Selected bond lengths $[\mathring{A}]$ and angles $[^{\circ}]$ for $Rb_2P_2S_6.$

2.139(2)	\langle S1 - P - S2 ^{iv}	110.65(5)
1.973(2)	(S2 ^{iv} - P - S2 ^{vi}	118.24(2)
2.937(1)	S1 - S2 ^{iv}	3.381(1)
91.13(4)	S2 ^{iv} - S2 ^{vi}	3.386(1)
nation:		
x	3.509(1)	
Rb - S2 ⁱⁱⁱ , S2 ^v , S2 ^{vii} , S2 ^{viii}		
v, S2 ^x , S2 ^{xi}	3.666(2)	
	1.973(2) 2.937(1) 91.13(4) nation:	1.973(2) \(\) \(

Fig. 1. Unit cell contents for Rb₂P₂S₆.

Fig. 2. $[P_2S_6]^{2-}$ anion in $Rb_2P_2S_6$.

Fig. 3. Coordination of Rb⁺ in Rb₂P₂S₆.

Results and Discussion

Description of the crystal structure

The title compound crystallizes in the orthorhombic space group Immm with the lattice parameters: a = 8.485(3), b = 6.953(2), c = 9.259(3) Å, and Z = 2 (Fig. 1). The structure is isotypic to $Me_2P_2S_6$ (Me = K, Cs, Tl) [6–7].

The crystal structure is characterized by discrete $[P_2S_6]^{2-}$ anions with D_{2h} symmetry. Two PS_4 tetrahedra are connected by a common edge. The P-S bond lengths range from 1.973(2) to 2.139(2) Å (Fig. 2). These values are very similar to those found in related structures [6-7,9-11].

Rubidium is coordinated by ten sulfur atoms, of which eight are located at the corners of a slightly distorted tetragonal prism with Rb-S bonds of 3.521(2) and 3.666(2) Å, and two additional ones form caps with Rb-S distances of 3.509(1) Å.

Vibrational spectrum and assignment

Vibrational modes of the $[P_2S_6]^{2-}$ anion

The Raman and IR spectra of crystalline $Rb_2P_2S_6$ (Fig. 4) are dominated by the vibrational modes of the $[P_2S_6]^{2-}$ unit situated in the frequency region below $800~\text{cm}^{-1}$. Therefore and due to the quite similar molecular parameters of the $[P_2S_6]^{2-}$ unit in $K_2P_2S_6$ and $Cs_2P_2S_6$ [7], $[K(18\text{-crown-6})]_2$ $[P_2S_6] \cdot 2$ CH₃CN [10] and $[Na(12\text{-crown-4})_2]_2$ $[P_2S_6] \cdot CH_3CN$ [11] the spectra have been interpreted only with respect to $[P_2S_6]^{2-}$ with D_{2h} symmetry.

A vibrational analysis of the $[P_2S_6]$ unit with D_{2h} symmetry [16] results in

Fig. 4. FT-Raman (a, $\lambda_{exc.} = 1064$ nm) and FT-IR (b) spectra of crystalline $Rb_2P_2S_6$ at room temperature. (Raman, intensity in arbitrary units; IR, transmittance).

$$\Gamma_{\text{vib}}(D_{2h}) = 4A_g + A_u + 2B_{1g} + 3B_{1u} + 2B_{2g} + 2B_{2u} + B_{3g} + 3B_{3u},$$

with the *gerade* species being Raman active and the *ungerade* species, except A_u , infrared active. The rule of mutual exclusion is valid.

Based on vibrational analyses and *ab initio* calculations [16,17] the vibrational frequencies of $P_2S_6^{2-}$ have been assigned. This P_2S_6 assignment may be transferred here for the title compound for the sake of comparability with that of other investigated $P_2S_6^{2-}$ salts. The vibrational frequencies of $Rb_2P_2S_6$ are in best agreement with those measured by Menzel [8]. The data are given in Table 4 along

Raman	Raman	IR	IR	Assignment / mode
this work	$Rb_2P_2S_6$ [8]	this work	$Rb_2P_2S_6$ [8]	description (D_{2h}) [8, 17]
		711 vvw		
		693, 674 vw	716, 692 m	Combination?
		656 vs	659 m,br	v_8 / B_{1u} , v_{as} PS_2
662 vw	663 vw,br			v_{11} / B_{2g} , v_{as} PS_2
613 vvw	634 vw			Combination?
599 w-m	600 m			v_1 / A_g , v_s PS ₂
		551 s,br	551 m,br	v_{16} / B_{3u} , v_{as} PS ₂
		533 m	534 vw	v_{13} / B_{2u} , v_{ring}
490 vw				Combination?
415 vvs	415 vs			v_2 / A_g , v_{ring}
		398 vs	397 m,br	v_{17} / B_{3u} , v_{ring}
361 m	362 m	367, 364 vw		v_6 / B_{1g} , v_{ring}
309 s	309 s			v_3 / A_g , δ_{ring}
281 vvw		271 vvw		
		258 m	258 m	v_{18} / B_{3u} , ring torsion
252 m	253 m	248 vvw		v_7 / $\mathrm{B_{1g}}$, δ PS $_2$
		235 s	235 s	v_9 / B_{1u} , δ PS _t S _b
205 vvw		213 vvw		
197 w-m	198 w			v_{12} / B_{2g} , δ PS ₂
		194 m	194 m	v_{14} / B_{2u}
184 vs	185 m			v_{15} / B_{3g} , δ PS ₂
171 s	172 m			v_4 / A_g , $\delta_{ m ring}$
			84 vs,br	$v_5 / A_u / / v_{10} / B_{1g}$?
Lattice vibra	tions			
87 vs	88 m, br			[A _g ?]
			84 vs,br	[B _u species]
50 vvw				[Bg species]
37 vvw				[Bg species]

Table 4. Vibrational frequencies (cm^{-1}) of crystalline $Rb_2P_2S_6$ along with their estimated intensities and proposed assignments.

Estimated intensities: s: strong, m: medium, w: weak, v: very, sh: shoulder, br: broad.

with their estimated intensities and their proposed assignment.

Vibrational modes of crystalline Rb₂P₂S₆, factor group analysis

Based on the determined crystal structure and the site symmetry of the atoms the total irreducible representation for crystalline Rb₂P₂S₆ may be obtained disregarding the presence of a covalently bonded [P₂S₆]²⁻ anion [18, 19]. The title compound as well as K₂P₂S₆ and Cs₂P₂S₆ [7] crystallize in space group $Immm\ (D_{2h}^{25}, \text{ no. 71})$ with Z=2 and $Z^B=1$, respectively. The site symmetry / Wyckoff sites for the elements are: Rb on $4f/C_{2v}$; P on $4j/C_{2v}$; S₁ (S_{bridge}) on $4e/C_{2v}$, and S₂ (S_{terminal}) on $8l/C_s$ [20, 21]. The A₁(T_z), B₁(T_y) and B₂(T_x) – C_{2v} site-group species for Rb, P and S₁ atoms as well as the A'(T_x,T_y) and A''(T_z) – C_s site-group have to be correlated to the D_{2h} factor-group species. The lattice vibrations involving Rb⁺, $\Gamma_{Rb}^{cyst.}$, inclusive the acoustical vibrations, result in

$$\Gamma_{Rb}^{cryst.} = 1 A_g + 1 B_{2g} + 1 B_{3g} + 1 B_{1u} + 1 B_{2u} + 1 B_{3u},$$

with

$$\Gamma_{\text{Rb}}^{\text{acoust.}} = 1 \, B_{1u}(T_z) + 1 \, B_{2u}(T_v) + 1 \, B_{3u}(T_x).$$

The total irreducible representation for the Rb₂P₂S₆ crystal, $\Gamma^{\text{cryst.}}$, is obtained as the sum of the mentioned correlated factor-group species in D_{2h} derived for Rb, P and S₁ (all in C_{2v}) and S₂ (C_{s})

$$\Gamma^{\text{cryst.}} = 5 A_g + 3 B_{1g} + 4 B_{2g} + 3 B_{3g}$$

 $+ 1 A_u + 5 B_{1u} + 5 B_{2u} + 4 B_{3u},$

with the *gerade* species being Raman active and the *ungerade* species, except A_u (inactive), being IR active. The mutual exclusion rule is valid.

Since $Rb_2P_2S_6$ is built up from Rb^+ and $P_2S_6^{2-}$ ions the total irreducible representation of the crystalline compound, $\Gamma^{cryst.}$, can also be obtained from the internal $P_2S_6^{2-}$ vibrations, $\Gamma_{P_2S_6}^{int.}$, the lattice vibrations $\Gamma_{Rb}^{cryst.}$ and $\Gamma_{P_2S_6}^{cryst.}$ and the $P_2S_6^{2-}$ librations, $\Gamma_{P_2S_6}^{lib}$ [18, 19] (*c.f.* Table 5). The number of species in $B_{1g} - B_{3g}$ and $B_{1u} - B_{3u}$ can be interchanged with the axis settings for the $P_2S_6^{2-}$ unit.

The lattice vibrations of the title compound as well as those of isotypic $K_2P_2S_6$ / $Cs_2P_2S_6$ [7] and $Tl_2P_2S_6$

Species	Number of modes				Spectral activity			
D_{2h}					Raman	IR		
	N_{total}	Nacoust.	$N_{Rb/trans.}$	$N_{P2S6/tr.}$	$N_{lib.}$	$N_{vib/P2S6}$		
$\overline{A_g}$	5		1			4	$\alpha_{xx}, \alpha_{yy}, \alpha_{zz}$	
B_{1g}	3				1	2	α_{xy}	
B_{2g}	4		1		1	2	α_{xz}	
B_{3g}	3		1		1	1	$lpha_{ m yz}$	
A_{u}	1					1	inactive	
B_{1u}	5	1		1		3		E // z
B_{2u}	5	1		1		3		E // y
B_{3u}	4	1		1		2		E // x
Σ	30	3	3	3	3	18		

Table 5. Factor group analysis for crystalline Rb₂P₂S₆ (Space group $Immm - D_{2h}^{25}$ (no. 71), $Z = 2/Z^{B} = 1$).

With $N_{total} = \Gamma^{cryst.}$ (total number of vibrations of crystalline $Rb_2P_2S_6$, 3n=30), $N_{acoust.} = \varGamma_{Rb}^{acoust.}$ (acoustical modes), $N_{Rb/trans.} = \varGamma_{Rb}^{cryst.}$ (lattice vibrations involving Rb^+), $N_{P_2S_6/tr.} = \varGamma_{P_2S_6}^{cryst.}$ (lattice vibrations involving $P_2S_6^{2-}$), $N_{lib} = \varGamma^{lib}$ ($P_2S_6^{2-}$ librations), $N_{vib/P_2S_6} = \varGamma^{int.}$ (internal $P_2S_6^{2-}$ vibrations, 3n-6=18).

[6] are not pronounced, and they could not be assigned in detail (*c.f.* Table 4 and 5).

Conclusion

With the receipt of single crystals of the title compound its crystal structure could be determined. As expected, but now verified, $Rb_2P_2S_6$ is isotypic to $K_2P_2S_6$ and $Cs_2P_2S_6$. Only the crystal structures of $Na_2P_2S_6$ and $Li_2P_2S_6$ have been left undetermined in the exclusive group of the alkali hexathiodiphosphates(V). The vibrational spectrum of the crys-

talline compound was investigated by a factor group analysis.

Supporting information available

Further details of the crystal structure investigation can be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany, (Fax: (49) 7247 808 666; e-mail: crysdata@fiz.karlsruhe.de) on quoting the depository number CSD_416176.

Acknowledgement

The authors are indebted to Prof. Dr. A. Adam for his support and helpful suggestions and discussions.

- S. J. Cyvin, B. N. Cyvin, C. Wibbelmann, R. Becker, W. Brockner, M. Parensen, Z. Naturforsch. 40a, 709 (1985).
- [2] R. Becker, W. Brockner, B. Eisenmann, Z. Naturforsch. 42a, 1309 (1987).
- [3] R. Becker, PhD thesis, Clausthal University of Technology, Clausthal-Zellerfeld, Germany (1988).
- [4] E. Thilo, G. Ladwig, Ber. Dtsch. Akad. Wiss. Berlin 4, 720 (1962).
- [5] P. Toffoli, P. Khodadad, N. Rodier, Acta Crystallgr. B34, 3561 (1978).
- [6] C. Wibbelmann, W. Brockner, B. Eisenmann, H. Schäfer, Z. Naturforsch. 38b, 1575 (1983).
- [7] W. Brockner, R. Becker, B. Eisenmann, H. Schäfer, Z. Anorg. Allg. Chem. **520**, 51 (1985).
- [8] F. Menzel, PhD thesis, Clausthal University of Technology, Clausthal-Zellerfeld, Germany (1993).
- [9] M. Gjikaj, A. Adam, M. Düwel, W. Brockner, Z. Kristallogr. NCS 220, 67 (2005).
- [10] M. Gjikaj, W. Brockner, Vibrational Spectrosc. 39, 262 (2005).
- [11] M. Gjikaj, W. Brockner, A. Adam, Z. Anorg. Allg. Chem. 632, 279 (2006).
- [12] International Tables for X-Ray Crystallography, Vol. C, Kynoch Press, Birmingham (1974).

- [13] G. M. Sheldrick, SHELXS-97, SHELXL-97, A program package for crystal structure solution and refinement. University of Göttingen, Germany (1997).
- [14] K. Brandenburg, Diamond, Version 3, Crystal impact GbR, Bonn (2004).
- [15] POV-Ray TM, Version 3, Copyright by the POV-Ray-Team (1997).
- [16] M. Ystenes, W. Brockner, F. Menzel, Z. Naturforsch. 47a, 614 (1992).
- [17] F. Menzel, W. Brockner, M. Ystenes, J. Mol. Struct. 294, 53 (1993).
- [18] W. G. Fateley, F. R. Dollish, N. T. McDevitt, F. F. Bentley, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The Correlation Method, Wiley, New York/London (1972).
- [19] D. M. Adams, D. C. Newton, Tables for Factor Group and Point Group Analysis, Department of Chemistry, University of Leicester, England (1970) (LEI 7RH).
- [20] Print error in [7] for S₂, corrected in Acta Crystallogr. data base of crystal structures, (FindIt-[ICSD] // ICSD #33278)
- [21] J. C. Decius, R. M. Hexter, Molecular Vibrations in Crystals, McGraw-Hill Book Comp., New York (1977).