Characterization of Structure Types by Lattice Complexes with Increased Self-Coordination Numbers

Jürgen Hauck and Klaus Mika
Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany
Reprint requests to Dr. K. Mika. Fax: 49-2461-612280. E-mail: k.mika@fz-juelich.de

Z. Naturforsch. 61b, 983 - 994 (2006); received March 8, 2006

Most of the 402 characteristic Wyckoff positions were analyzed for the numbers 1, 2, 3, etc. of lattice complexes with increased self-coordination numbers T_{i} of the $i=1-3$ shells. The Wyckoff letters of standardized inorganic structures with the proper space group number get an additional number $1,2,3$, etc., if the $x, y, z, c / a, \cos \gamma$, etc. parameters are close to the parameters of these lattice complexes. The lattice complexes $1,2,3$, etc. or combinations of several of these complexes are sphere, layer or rod packings. The plate- or needle-like habit of single crystals can frequently be correlated with layered or rod-like packings. Combinations of lattice complexes can be analyzed for attractive or repulsive interactions by structure maps.

Key words: Wyckoff Sequence, Characteristic Lattice Complexes, Crystal Habit, Sphere Packings, Structure Map

Introduction

Compilations of standardized inorganic structures like TYPIX [1], SICS [2] or the Landolt-Börnstein compilation of structure types [3] have become available in recent years, to compare new structures with the large number of known structures. The standardization of the structures is essential for the selection of the structure type. Standardized isopointal structures with the same sequence of Wyckoff letters can contribute to a known structure type, if the ratios of lattice parameters and the positional parameters are similar [1-3]. The deviation of the parameters of a structure type, however, is not well defined.

The metals Mg and Zn of Wyckoff position 194-c (short symbol for position (2c) of space group number 194 of $P 6_{3} / \mathrm{mmc}$) for example with the ratios of lattice constants $c / a=1.6241$ and 1.8563 are listed as different entries (TYPIX) or as a single entry of most other compilations and textbooks. The same applies for the 194-c position of isopointal structures with the Wyckoff sequences 194-ca like NiAs ($c / a=1.393$) or $\mathrm{FeS}(c / a=1.688)$ and $194-d c$ of $\mathrm{BN}(c / a=2.660)$. The structure types of the present investigation will be defined by structures which are close to theoretical structures with maximum self-coordination numbers. The metal atoms of an ideal hexagonal close packing (hcp) with $c / a=\sqrt{8 / 3} \approx 1.6330$ for example
have 12 nearest neighbors (six in the same layer and six in neighboring layers), 6 next-nearest neighbors (in the same layer) and 2 third neighbors (in the two next-nearest layers). This sphere packing is characterized by the three self-coordination numbers $\left(T_{1} T_{2} T_{3}\right)$ (1262) in the present investigation. The ($T_{1} T_{2} T_{3}$) values are decreased to (666) at the different c / a values of Mg or Zn . The $T_{1}=12$ neighbors at axial ratio $c / a=\sqrt{8 / 3}$ decrease to $T_{1}=T_{2}=6$ neighbors at slightly different ratios. Increased T_{3} values (668) or (66 12) are obtained again at $c / a=4 / 3$ or $c / a=$ $\sqrt{20 / 3}$. The $c / a=1.6241,1.8563$ and 1.688 values of Mg, Zn and FeS are close to $c / a \approx 1.6330$ of the hcp packing, while the c / a values of NiAs (1.393) and $\mathrm{BN}(2.660)$ are close to the (668) $(c / a=4 / 3)$ or (6 612) $(c / a \approx 2.580)$ packings with increased T_{i} values. Certain c / a values frequently occur [4,5]. A similar relation for $x y z$ values can be suggested by comparison of cubic structure types [3]. Two lattice complexes with increased self-coordination numbers $\# 1 \widehat{=}\left(\begin{array}{ll}4 & 6\end{array} 3\right)$ and $\# 2 \widehat{=}(12624)$, for example, were determined for the characteristic Wyckoff position (32e) $x x \times$ of space group number $227(F d \overline{3} m)$ at $x=(\sqrt{6}-2) / 8$ and $x=1 / 4$. The Wyckoff letter e of standardized inorganic structures like $\mathrm{H}_{2} \mathrm{O}(227-e 1 a)$, $\mathrm{Ti}_{2} \mathrm{C}(227-e 2 c)$ or $\mathrm{MgAl}_{2} \mathrm{O}_{4}(227-e 2 c b)$ get the numbers 1 or 2, if the x value is close to that of the (463) or (12624) sphere packings. The determination of ($T_{1} T_{2}$
T_{3}) lattice complexes with increased T_{i} values will be explained in some detail and applied for the analysis of cubic structure types of the Landolt-Börnstein compilation [3]. The non-invariant Wyckoff positions get the numbers 1,2 , etc. like $227-e 2 c b$ of the $227-e$ position of oxygen atoms in $\mathrm{MgAl}_{2} \mathrm{O}_{4}$, if the $x y z$ values are close to the lattice complexes with increased $\left(T_{1} T_{2} T_{3}\right)$ values.

Characteristic Lattice Complexes with Increased Self-Coordination Numbers

The characteristic lattice complexes with increased T_{i} values like the 3D (1262) packing of the Mg structure type will be outlined by some examples in 1D or 2D. Atoms in a one-dimensional row (1D) with lattice constant $a=1$ and inversion centers at $x=0$ and $x=1 / 2$ can occupy the Wyckoff positions $(1 a) x=0$, (1b) $x=1 / 2$ or (2c) with the coordinates x and \bar{x} of the two positions. The A and B atoms of an AB compound like a theoretical 1D NaCl can occupy the ($1 a$) and (1b) positions. Each A atom has the self-coordination numbers $\left(T_{1} T_{2} T_{3}\right)(222)$ of nearest, second and third A-A neighbors at distances $d_{i}=1,2$ and 3 . The same applies for the $\mathrm{B}-\mathrm{B}$ neighbors of $(1 b)$ position. The row of alternating A and B positions with maximum Madelung factor $\mathrm{MF}=2 \ln 2$ in 1 D can also be considered as a lattice complex $\left(\begin{array}{ll}2 & 2\end{array}\right)$ for a combination of A and B atoms $(\mathrm{A}=\mathrm{B})$ and distances $d_{i}=0.5,1$ and 1.5 of first, second and third neighbors. The (2 22) combination of A and B positions of an $A B_{2}$ compound with A and B atoms in Wyckoff positions (1a) $x=0$ and (2c) x and \bar{x} is only possible for $x=1 / 3$. Decreased T_{i} values ($\left.\begin{array}{l}1 \\ 1\end{array} 2\right)$ are obtained for the B atoms with distances $d_{i}=2 x, 1-2 x$ and 1 between nearest, second and third $\mathrm{B}-\mathrm{B}$ neighbors for x values within the range $0<x<0.25$ and $d_{i}=1-2 x, 2 x$ and 1 for increased x values $0.25<x<0.5$. Theoretical 1D AB_{2} structures $\mathrm{CdO}_{2}, \mathrm{FeS}_{2}, \mathrm{PdF}_{2}, \mathrm{SiO}_{2}$ or CO_{2} with A atoms in $(1 a) x=0$ and B atoms in (2c) x, \bar{x} positions with $x=0.6\left(\mathrm{CdO}_{2}\right), 0.35\left(\mathrm{FeS}_{2}\right), 0.28\left(\mathrm{PdF}_{2}\right), 0.26\left(\mathrm{SiO}_{2}\right)$ and $0.1\left(\mathrm{CO}_{2}\right)$ can contribute to three structure types. The x value of CdO_{2} is varied to $\bar{x}=0.4$ (standardized) for the comparison of the $\mathrm{O}-\mathrm{O}$ and $\mathrm{S}-\mathrm{S}$ dumb-bells of CdO_{2} and FeS_{2} with the center of the dumb-bells in $(1 b) x=0.5$ position. The CO_{2} structure can be characterized by a linear $\mathrm{O}=\mathrm{C}=\mathrm{O}$ molecule with the center of the molecule A , the C atom, in $(1 a) x=0$ position. This structure with $\mathrm{A}=\mathrm{CO}_{2}$ can be compared with $\mathrm{A}=\mathrm{N}_{2}$ or D_{2} dumb-bells or organic structures with the center
of the molecules in the same position. The T_{i} values of the $\mathrm{N}_{2}, \mathrm{D}_{2}, \mathrm{O}_{2}$ or S_{2} dumb-bells are (112). Increased T_{i} values (2 22) are obtained for the (2c) position at $x=0.25$. The PdF_{2} and SiO_{2} structures with x values close to the ideal $x=0.25$ value contribute to the idealized AB_{2} structure type with Wyckoff positions (1a) $x=0$ and $(2 c) x=0.25$. The three structure types of the $\mathrm{CdO}_{2}, \mathrm{SiO}_{2}$ and CO_{2} structures in 3D with Wyckoff positions 205-a and 205-c have a face-centered cubic (fcc) sphere packing of A atoms with $\left(T_{1} T_{2} T_{3}\right)$ values (126 24) and a sphere packing of 205-c $x \times x$ position with $\left(T_{1} T_{2} T_{3}\right)$ values $\left(\begin{array}{ll}7 & 6\end{array}\right)$ at $x=(\sqrt{5}-1) / 8$ [6]. The well-known FeS_{2} (pyrite) with S_{2} dumb-bells instead of SiO_{2} or PdF_{2} is listed as structure type in most compilations. A large variety of compounds with different x values are given in the SICS compilation [2]. The (1 1 2) values of the 1D dumb-bells of N_{2} or D_{2} can be compared with the (166) values of the $3 \mathrm{D} \mathrm{N}_{2}$ or D_{2} structure (205-c).

Usually the compound, which was investigated first, is chosen as structure type in the present investigation. Most structures like $\mathrm{CO}_{2}, \mathrm{~N}_{2}$ or O_{2} with the center of the molecule or cluster at the carbon position of CO_{2} are not included in the present investigation because of the deviation of the x value from $x=0.25$ of the ideal structure in 1D. These structures can be characterized like the structure of an element A in the varied Wyckoff positions $(1 a) x=0$ in 1D or 205-a instead of 205-c $\left(\mathrm{N}_{2}\right.$ or $\left.\mathrm{D}_{2}\right)$ or 205-ca $\left(\mathrm{CO}_{2}\right)$ in 3 D . The same applies for $\mathrm{Fe}\left(\mathrm{S}_{2}\right)$ with the center of the S_{2} dumb-bell in 205- b position, which is identical to the NaCl structure (225-ba). Other structures like $\mathrm{NH}_{4} \mathrm{I}$ or NaClO_{4} containing NH_{4} or ClO_{4} groups with rotational disorder or split sites can be compared with a 1D structure with N or Cl positions in $(1 a) x=0$ and H or O atoms in $(2 c)$ $x=0.1$ with an occupancy of 0.5 . Non-standardized structures like 1D SiO_{2} with the different Wyckoff positions $(1 b) x=0.5$ and $(2 c) x=0.24$ or with all atoms in $(1 a) x$ position of a space group without inversion center at $x=0.26(\mathrm{Si}), x=0$ and $x=0.52$ (O atoms) cannot be compared with the standardized structures. All atoms of the $(1 a) x$ position of the 1 D space group without inversion center have the $\left(T_{1} T_{2} T_{3}\right)(222)$ selfcoordination values. The missing symmetry (inversion center) would be detected for the approximation of the $x=0.52$ value to $x=0.5$ and the $\left(\begin{array}{ll}2 & 2\end{array}\right)$ values for both oxygen positions. The discussion of the different structures in 1D shows that all kinds of $A-A$ or $\mathrm{B}-\mathrm{B}$ packings can be analyzed by consideration of $(1 a)$ $x=0$ and (2c) x, \bar{x} positions with T_{i} values (2 2 2) or

Fig. 1. 2D packings of A atoms with increased ($T_{1} T_{2} T_{3}$) values of Wyckoff positions 2-a (2 26 (a), 264,24 6), 6-a (224(a), 244,226 (b), 444), 11-d (2 24 (b), 314 , 12 5), 11-f (2 3 2, 444$), 12-c(146$, $521,444), 15-c(428,446)$. The T_{1} nearest, T_{2} next-nearest and T_{3} third $\mathrm{A}-\mathrm{A}$ neighbors are connected by solid, dashed and dotted lines, respectively.

2D structures are characterized by the lattice parameters a, b with the angle γ between a and b and the x, y parameters of different Wyckoff positions. Some packings of A atoms with increased self-coordination numbers $T_{1} T_{2} T_{3}$ of first, second and third A-A neighbors are shown in Fig. 1. The four positions of A atoms in Wyckoff position 11- d (space group $p 4 m m$) with the $x y$ coordinates $x 0 ; \bar{x} 0 ; 0 x ; 0 \bar{x}$ in 224 (b), 314 and 125 packings can be compared with the two posi-
tions x and \bar{x} of 2-c position in 1D. Clusters of four or two atoms are obtained for x values close to $x=0$ or $x=0.5$, respectively. The T_{2} or T_{3} numbers are increased at $x=1 / 4(224)$ or $(-1+\sqrt{3}) / 2(125)$. A 2D circle packing [16] with T_{i} values (3 14) is formed at $x=(2-\sqrt{2}) / 2$. The intermediate $\left(T_{1} T_{2} T_{3}\right)$ values (2 111) and ($\left.\begin{array}{lll}2 & 1 & 1\end{array}\right)$ are decreased. Similar results with circle packings of A atoms at intermediate x values are obtained for Wyckoff positions 11-f (4 4 4), 12-c (5 21 and 44 4), 15-c (4 28 and 44 6). The T_{1} nearest neighbors are connected in two dimensions. The other packings with $T_{1}<3$ are rod packings with $T_{1}=2$ neighbors (first and second row of Fig. 1) or isolated A_{2} or A_{4} clusters with $T_{1}=1$ or 2 A neighbors within the clusters. The rod packings (2 2 4, 244 and 226) and the circle packing (444) are obtained for A atoms in the Wyckoff position $x=y=0$ of $6-a$ of a rectangular lattice (pmm) with ratios of lattice constants $b / a=1 / 3,1 / 2,1 / \sqrt{3}$ or 1 . The intermediate T_{i} values (2 2 2, 222,224) are decreased. For $a=1$, $b=1 / 2$ as an example the A atom at $x=y=0$ has $T_{1}=2$ nearest neighbors at the b axis with $y= \pm 1$, $T_{2}=2$ neighbors at $y= \pm 2$ plus $T_{2}=2$ neighbors at the a axis with $x= \pm 1$ and $T_{3}=4$ neighbors at diagonal positions with distances $\sqrt{1+0.5^{2}}$. The square-net circle packing with T_{i} values (444) at distances $1, \sqrt{2}$ and 2 is obtained at $b / a=1$.
The next example in 2D for the characteristic Wyckoff position (1a) of $p 2$ with space group number 2 (= 2-a) was investigated for the special case $a=$ $b=1$ lattice constants and varied angles γ [9]. The square net with T_{i} values (44) and distances $d_{i}=1$, $\sqrt{2}$ and 2 of the nearest, second and third A-A neighbors are obtained at $\gamma=90^{\circ}$. The T_{i} values are decreased to (4 2 2) within the range $60^{\circ}<\gamma<90^{\circ}$ and reach (666) at $\gamma=60^{\circ}$ (hexagonal net with $d_{i}=1, \sqrt{3}$ and 2). The T_{i} values vary further to (244), (246), (2 4 2), (2 64), (2 24), (2 26) and (2 22) (first row of Fig. 1). The $\cos \gamma$ values for increased T_{i} values (italic) are $3 / 4,7 / 8$ and $17 / 18$, respectively. Identical packings are obtained for negative $\cos \gamma$ values in the range $90^{\circ}<\gamma<180^{\circ}$. There is a large gap of $\Delta \gamma=30^{\circ}$ between the (444) and (666) circle packings. The $\cos \gamma=0.25$ value ($\gamma \approx 75^{\circ}$) is the limit between both. The range of γ values between the (2 64) and (2 26) packings at $\gamma \approx 29^{\circ}$ and 19.2° is decreased. The (2 22) values at low $\gamma<19.2^{\circ}$ (or γ close to 180°) correspond to the linear chain. The observation of the same ($T_{1} T_{2} T_{3}$) values for Wyckoff position 9-a at the ratios of lattice constants $b / a=\tan \gamma / 2$ show that
identical packings can occur in different characteristic Wyckoff positions [9]. The ratio of lattice parameters b / a could be varied for the 2-a position besides the variation of $\cos \gamma$, to search for other characteristic lattice complexes with increased T_{i} values. The solutions can be obtained in a similar way as the trial-and-error or least-squares refinement of crystal structures. First the distances d_{i} of $i=1-4$ shells of A-A neighbors are calculated. The smallest ratio d_{i+1} / d_{i} is then decreased further by variation of the parameters b / a and $\cos \gamma$ for the final value $d_{i+1} / d_{i}=1$ at increased T_{i} values. A slightly increased ratio has to be taken, if it decreases faster. The b / a and $\cos \gamma$ values of the increased T_{i} values are the starting points for a second run of a trial-and-error calculation. The boundaries between the different packings meet at certain b / a and $\cos \gamma$ or x and y values in other Wyckoff positions with two parameters $[8,10]$. The numbers of runs for the final packing with increased T_{i} values correspond to the numbers of variables $x, y, z, \cos \alpha, \cos \beta, \cos \gamma, b / a, c / b$ and c / a. All lattice complexes with increased T_{i} values were determined for less than two parameters in 2D and 3D [9]. The parameters of sphere packings with increased T_{i} values were determined by Fischer, Koch and Sowa by different methods [8,10-16]. The increased $\left(T_{1} T_{2} T_{3}\right)$ values of each characteristic Wyckoff position are listed in Table 1. The structures of the Landolt-Börnstein compilation of structure types with less than two parameters are analyzed for these values in Table 2. In some cases two or more Wyckoff positions can be combined to a sphere packing. The Cs and Cl atoms (221-ba) of the CsCl structure for example form the bcc lattice of $\mathrm{W}(229-a)$, the Cu and Au atoms of $\mathrm{Cu}_{3} \mathrm{Au}$ (221-ca) the fcc lattice of $\mathrm{Cu}(225-a)$ (Table 2). Some examples of combinations of two or more Wyckoff positions can be found in Table 3.

The NaCl structure with Wyckoff positions 225-ba for Na and Cl atoms can be combined to the primitive cubic packing with T_{i} values (6128) ($\mathrm{A}=\mathrm{B}$ atoms) of Wyckoff position 221-a. The distances $d_{i}=1, \sqrt{2}$ and $\sqrt{3}$ correspond to the primitice cubic packing with lattice constant $a=1$. The packings with increased T_{i} values (2 26), (2 68), (24 10), (612 8), (4 68) and (446) are obtained for the Wyckoff position 123-a with a tetragonal distortion of the primitive cubic packing at $c / a=1 / 3,1 / 2,1 / \sqrt{3}, 1, \sqrt{2}$ or $2[6]$. The (2 2 2) values of the linear chain are obtained at $c / a<1 / 3$, the (4 4 4) values of the square net at $c / a>2$. The first and eighth values (2 22) and (4 4 4) of 123-a are taken for more than 10% deviation from $c / a=1 / 3$ or 2 in

Table 1. Numbers 1, 2, 3, etc. of lattice complexes with increased self-coordination numbers $\left(T_{1} T_{2} T_{3}\right)$ of the first, second and third shell for characteristic Wyckoff positions (WP) of space group (SG) numbers.

SG-WP	1,4	2,5	3,6	SG-WP	1,4	2,5	3,6
1-a	(126 24)	(10 4 8)	(8126)	111-0	(7 12)	(62 12)	(572)
	(8612)	(6128)		112-n	(12624)	(1048)	(968)
2-i	(12 624)	(1262)	(1123)		(812)	(742)	(722)
	(10912)	(10 4 8)	(9812)	113-e	(12 6 24)	(1123)	
	(812 6)	(812 4)	(8612)	113-f	(819)	(776)	
	(866)	(6128)	(6 4 8)	114-e	(12624)	(1123)	(10 4 8)
	(626)	(5 6 6)	(4 12 12)		(9 68)		
12-i	(1123)			115-j	(7 12)	(62 12)	
43-b	(1123)			115-I	(612 8)	(654)	
62-c	(10 4 2)			116-j	(9 812)	(812)	(7 42)
63-c	(1084)	(10 42)			(722)	(712)	(62 12)
64-f	(1123)			117-i	(12 624)	(10 4 8)	(712 5)
70-a	(10 4 8)				(7 42$)$		
70-g	(10 4 8)			118-i	(9 812)	(819)	(7125)
78-a	(12624)	(10 4 8)	(844)		(7 7 6)	(6 12 12)	
80-b	(7 4 2)	(6 12 12)	(612 8)	119-i	(819)	(776)	(612 12)
81-h	(126 24)	(1123)		119-j	(612 8)	(662)	(574)
82-g	(126 24)	(10 4 8)	(10 15)	120-i	(12 624$)$	(10 4 8)	(742)
	(9 6 8)	(9 5 20)			(7 3 4)	(7 27)	
83-j	(712 5)			121-i	(12624)	(10 4 8)	(968)
83-I	(712 5)				(812)	(7 4 2)	
84-j	(12 624)	(1123)		121-j	(7 42)	(7 3 4)	(7 12)
84-k	(98 12)	(712 5)			(612 8)	(66 1)	(6 212)
85-g	(10 15)	(9 5 20)	(7 4 2)	122-d	(126 24)	(10 4 8)	(842)
86-g	(126 24)	(1123)	(10 15)	122-e	(12624)	(1123)	(9812)
	(9 812)	(9 5 20)	(7 4 2)		(832)	(822)	(7 24)
87-h	(10 15)	(9520)	(7 42)		(723)	(722)	
87-i	(712 5)	(76 10)	(727)	123-a	(2 22)	(2 26)	(2 68)
88-f	(126 24)	(10 4 8)	(9 42)		(2 410)	(6128)	(4 68)
	(862)	(841)	(823)		(4 4 6)	(4 4 4)	
	(8 22)			123-g	(612 8)		
89-p	(812)	(7 4 2)	(722)	123-j	(6128)		
90-g	(819)	(712 5)	(776)	123-1	(572)		
93-p	(9 8 12)	(7 12)	(612 8)	123-p	(572)		
	(654)	(62 12)	(5 7 2)	123-r	(612 8)		
94-g	(126 24)	(10 4 8)	(98 12)	123-s	(572)		
	(7125)	(7 42)		123-u	(7 27)	(5 7 2)	(5 4 1)
95-a	(12 624)	(10 4 8)	(62 2)	124-m	(812)	(7 42$)$	(722)
95-c	(8124)	(64 8)		125-m	(812)	(742)	
95-d	(12 624)	(108 4)	(1048)	125-n	(7 42)	(7 3 4)	
	(7 12)	(62 12)	(62 2)	126-k	(812)	(7 42)	(722)
	(6 14)				(7 1 1)	(62 1)	
96-a	(126 24)	(10 4 8)	(844)	127-g	(712 5)		
96-b	(12 624)	(1123)	(10 4 8)	127-i	(6128)		
	(812 4)	(722)		127-k	(7 12 5)		
97-k	(7 42)	(7 34)	(7 27)	127-I	(612 8)		
	(612 8)	(662)	(66 1)	128-k	(819)	(7 12 5)	(776)
	(612)	(5 72)	(5 4 1)	128-i	(712 5)	(612 8)	(66 1)
98-d	(612 8)	(5 2 2)		129-c	(126 24)	(10 4 8)	
98-f	(6 12 12)	(612 8)	(6 42)	129-i	(819)	(7 7 6)	
98-g	(12 624)	(10 4 8)	(822)	129-j	(612 8)	(654)	
	(723)	(712)	(612 8)	129-k	(6 62)	(5 7 2)	
	(634)	(62 12)	(62 1)	130-g	(821)	(819)	(812)
	(5 24)				(776)	(7 42)	(727)
109-b	(7 42)	(6 12 12)			(722)	(7 13)	
109-c	(6128)	(62 7)		131-j	(7 12)	(62 12)	
110-b	(12 624)	(1123)	(83 2)	131-0	(5 72)		
	(724)			131-q	(612 8)	(65 4)	
111-n	(12 624$)$	(10 4 8)		131-r	(612 8)	(572)	

Table 1 (continued).

SG-WP	1, 4	2, 5	3,6	SG-WP	1, 4	2, 5	3,6
132-i	(12 624$)$	(104 8)		142-g	(9 812)	(819)	(776)
132-n	(7 12)	(6 212)	(572)		(7 23)	(7 21)	(7 13)
132-0	(9 812)	(612 8)			(7 12)	(7 1 1)	(612 8)
132-p	(572)				(654)	(634)	(62 12)
133-k	(98 12)	(812)	(7 42)		(622)	(62 1)	
	(734)	(727)	(7 12)	145-a	(12624)	(8612)	
	(612 8)	(6212)	(62 2)	146-b	(812 6)	(8616)	(844)
	(621)	(5 72)	(5 4 1)	148-f	(105 21)		
134-m	(9 812)	(7 12)	(6 12 8)	152-c	(1123)		
	(654)	(62 12)		153-a	(10 4 8)	(64 4)	
134-n	(612 8)	(662)	(66 1)	154-a	(126 24)	(8 6 12)	
	(654)	(572)		155-d	(812 6)	(8616)	(648)
135-h	(12 624)	(10 4 8)	(712 5)		(624)		
	(7 4 2)			160-b	(8616)	(844)	
135-i	(9 812)	(712 5)	(727)	160-c	(6 26)	(5 6 6)	
	(612 8)			161-b	(126 2)	(866)	(848)
136-f	(12624)	(1123)			(844)	(822)	
136-i	(819)	(776)		162-k	(126 2)	(866)	
136-j	(9 812)	(7 12 5)		164-d	(126 2)	(866)	
136-k	(612 8)	(66 1)		164-i	(882)	(862)	(684)
137-g	(12 624)	(10 4 8)			(6 42$)$		
137-h	(7 12)	(6 12 8)	(654)	166-a	(2 22)	(2 28)	(2 86
	(6 212)	(5 7 2)			(268)	(8 612)	(686)
138-i	(9 812)	(812)	(7 42)		(6 8 8)	(612 8)	(6612)
138-j	(819)	(776)	(742)		(12 6 24)	(6612)	(6 12 12)
	(734)				(666)		
139-a	(2 22)	(2 210)	(2 10 8)	166-c	(12624)	(109 12)	(86 12)
	(286)	(1048)	(8 612)	166-d	(2 22)	(2 26)	(264)
	(126 24)	(4 12 20)	(4 412)		(2 46$)$	(648)	(4 64)
	(4 4 4)				(4 4 6)	(488)	(4 410)
139-e	(9 812)	(612 8)			(8616)	(4 410)	(4 4 10)
139-h	(612 8)	(654)			(4 4 6)		
139-i	(819)	(776)		166-f	(62 6)	(5 6 6)	(5 22)
139-I	(6 62)	(572)		166-h	(8616)	(778)	(7 43)
139-m	(6 12 8)	(572)			(724)	(7 12)	(648)
139-n	(612 8)	(66 1)			(62 2)		
139-o	(5 7 2)			167-e	(126 2)	(866)	(822)
140-h	(812)	(7 4 2)			(644)	(62 2)	
140-k	(7 42)	(7 3 4)	(612 8)	169-a	(126 2)	(866)	(822)
140-I	(727)	(572)	(5 4 1)	171-c	(7 4 2)	(634)	(5 6 6)
140-m	(6128)	(65 2)	(572)		(5 4 4)		
141-a	(2 22)	(2 26)	(264)	174-j	(8 12 6)		
	(2 46)	(6 4 8)	(4 68)	174-I	(812 6)		
	(4 4 10)	(4 12 2)	(4 12 12)	175-j	(7 10 5)		
	(4 4 16)	(812 4)	(4 4 4)	175-I	(7 10 5)		
141-c	(2 22)	(2 26)	(264)	176-h	(126 2)	(10 4 2)	
	(2 6 6)	(6 4 2)	(426)	176-i	(109 12)	(710 5)	
	(4 4 4)	(426)	(6 12 12)	177-n	(812)	(722)	
	(2 412)	(2 4 4)		178-a	(1048)	(6 4 4)	
141-e	(12 624)	(1084)	(1048)	178-b	(1262)	(866)	(822)
	(7 12 6)				(62 2)		
141-f	(6 12 8)	(5 22)		178-c	(1123)	(7 4 1)	(7 21)
141-g	(612 8)	(627)			(7 12)	(6 4 4)	(6 4 2)
141-h	(12 624)	(1048)	(822)		(62 2)	(614)	(6 12)
	(723)	(634)	(62 1)		(6 1 1)	(5 22)	
141-i	(819)	(7 7 6)	(712)	179-c	(1123)		
	(6 12 8)	(62 12)	(614)	180-c	(2 22)	(2 26)	(2 64$)$
	(6 13)				(2 4 6)	(644)	(4 64)
142-e	(126 24)	(10 4 8)	(612 8)		(4 4 6)	(4 4 4)	(4 410)
	(62 2)				(4 10 4)	(10 4 8)	(64 10)
142-f	(832)	(724)			(610 4)	(6610)	(66 6)

Table 1 (continued).

SG-WP	1, 4	2,5	3,6	SG-WP	1, 4	2, 5	3,6
180-f	(1048)	(926)	(644)	194-I	(574)	(5 6 6)	
180-g	(5 22)	(42 4)		195-j	(676)	(6110)	(5 88)
180-i	(642)	(634)	(5 6 6)	196-h	(645)		
	(5 4 4)	(5 22)		197-f	(9 4 18)	(9 12)	(645)
180-k	(7 1 1)	(642)	(634)		(622)		
	(62 1)	(566)	(5 4 4)	198-a	(12 624)	(6612)	(612 6)
	(5 42)	(5 23)	(5 22)	198-b	(848)		
	(5 21)	(512)		199-a	(612 8)	(396)	(366)
182-i	(109 12)	(778)	(7 4 2)	199-b	(848)	(4 62)	(428)
	(6 10 6)	(664)	(5 6 6)		(4 26)	(4 4 4)	
187-j	(684)			199-c	(9 418)		
187-I	(566)			200-f	(189)	(198)	(28 16)
187-n	(684)			200-j	(676)	(6110)	
187-o	(5 6 6)			200-1	(5 5 1)		
188-c	(109 12)	(5 6 6)		201-h	(9 12)	(645)	(614)
188-k	(1262)	(866)			(5 4 1)		
188-1	(109 12)	(566)		202-h	(645)		
189-f	(812 6)			202-i	(676)	(6110)	
189-i	(812 6)			203-g	(7 21)	(7 12)	
189-j	(610 6)			204-e	(1412)	(5 81)	(419)
189-I	(610 6)				(428)		
190-h	(8 12 6)	(882)	(862)	204-g	(9 1 2)	(645)	(614)
190-i	(812 6)	(778)	(6106)	204-h	(64 1)	(596)	
191-a	(2 22)	(2 28)	(2 812)	205-c	(763)	(679)	(667)
	(2 614)	(812 6)	(62 18)		(612 8)		
	(68 18)	(668)	(6 6 6)	205-d	(8616)	(821)	
191-c	(2 22)	(2 25)	(256)	206-c	(137)	(4 1 6)	(3 212)
	(238)	(5 6 6)	(389)	206-d	(8 616)	(4 46)	(482)
	(365)	(363)		206-e	(7 12)	(62 2)	
191-e	(8126)			207-k	(6 1 1)	(5 21 1)	
191-f	(2 22)	(2 26)	(2 68)	208-k	(162)	(3 42)	
	(2 4 10)	(684)	(42 12)	208-m	(8616)	(7 12)	(614)
	(4 614)	(4 4 8)	(4 4 6)		(5 4 1)		
191-h	(566)			209-j	(8 1 1)	(7 21)	
191-i	(684)			210-g	(2 816)	(4 4 2)	
191-j	(5 6 6)			210-h	(638)	(6 1 1)	(542)
191-I	(6106)	(5 6 4)			(5 14)		
191-n	(5 6 6)			211-i	(126)	(3 24)	(234)
191-0	(6106)	(5 64)			(414)	(2 25)	
191-p	(574)			211-j	(6 4 1)	(6 1 1)	(596)
191-r	(574)				(5 1 8)	(5 1 5)	(513)
192-1	(812)	(722)			(5 1 1)	(424)	
192-m	(7 1 1)	(62 1)	(6 12)	212-a	(612 6)		
	(574)	(5 2 2)		212-c	(3 6 6)	(3 67$)$	(376)
193-g	(126 2)	(866)			(4 12 12)	(136)	
193-j	(7 42)	(610 6)		212-d	(4 4 4)	(262)	(62)
193-k	(109 12)	(5 6 6)			(4 10 8)	(4 4 4)	
193-I	(6 10 6)	(654)	(574)	212-e	(9 4 18)	(611)	(5 1 2)
	(5 6 4)			214-a	(3 6 6)		
194-c	(2 22)	(2 28)	(2 86)	214-c	(4 4 4)		
	(268)	(866)	(626)	214-e	(8612)		
	(686)	(668)	(1262)	214-f	(482)	(2 25)	(234)
	(6612)	(6 12 12)	(666)		(2 16)	(3 4 4)	
194-f	(109 12)	(5 6 6)		214-h	(3 42)	(424)	(2 4 8)
194-h	(882)	(862)	(684)		(2 26)	(262)	(9 4 18)
	(642)			214-i	(5 24)	(522)	(5 2 1)
194-j	(664)	(5 6 6)			(5 11)	(422)	
194-k	(778)	(610 6)	(684)	215-e	(3 69)	(12 624)	
	(5 64)			215-i	(676)	(5 88)	

Table 1 (continued).

SG-WP	1, 4	2, 5	3,6	SG-WP	1, 4	2, 5	3,6
215-j	(435)			225-I	(435)		
216-e	(6 12 12)			226-i	(811)	(72 1)	
216-h	(5 212)			226-j	(63 3)	(5 5 1)	
216-i	(428)			227-a	(4 12 12)		
217-c	(3 614)	(968)	(6128)	227-c	(6 12 12)		
217-g	(9 4 18)	(8616)		227-e	(4 63)	(12 624)	
217-h	(5 1 5)	(5 1 3)		227-f	(4 14)	(4 5 2)	(834)
218-i	(9 4 18)	(8 616)	(7 12)		(4 4 6)	(488)	
219-h	(811)	(72 1)		227-g	(638)	(5 42)	(5 14)
220-a	(848)			227-h	(428)	(223)	
220-c	(8 612)	(5 63)	(3 212)	227-i	(4 3 4)		
220-d	(144)	(5 4 2)	(454)	228-g	(428)	(62 4)	
	(4 4 5)	(482)		228-h	(86 16)	(62 2)	(6 14)
220-e	(7 21)	(7 12)	(62 2)		(5 4 1)		
221-a	(6 12 8)			229-a	(8 612)		
221-c	(8 616)			229-b	(488)		
221-e	(428)	(5 18)	(149)	229-d	(428)		
221-g	(3 34)	(612 8)		229-e	(419)	(428)	(5 8 1)
221-h	(231)	(428)			(1 12 8)		
221-i	(426)	(4 4 8)	(676)	229-f	(3 32)	(3 41)	(4 31 1)
	(254)				(139)		
221-k	(435)			229-g	(2 24)	(314)	(125)
221-m	(551)			229-h	(428)	(466)	(8616)
221-n	(432)				(4 62$)$	(425)	(614)
222-i	(7 2 2)	(7 1 1)	(62 1)		(2 5 8)		
223-c	(2816)			229-i	(23 2)	(432)	(2 24)
223-g	(224)				(2 23)		
223-j	(2 3 4)	(4 14)	(2 25)	229-j	(515)	(5 13)	(42 4)
223-k	(8 6 16)	(7 12)	(614)	229-k	(64 1)	(596)	(5 18)
223-I	(64 1)	(596)	(5 18)	229-I	(4 4 1)	(432)	
224-e	(4 12 6)			230-b	(3 212)		
224-i	(2 22)	(2 31)	(3 63)	230-c	(482)		
224-k	(8616)	(614)	(5 4 1)	230-d	(482)		
	(428)			230-e	(2 3 3)	(143)	
224-1	(5 15)	(513)	(42 4)	230-f	(488)	(125)	
225-a	(126 24)			230-g	(3 4 4)	(2 816)	(62 2)
225-e	(454)	(86 16)			(426)	(496)	(524)
225-f	(3 34)	(3 64)	(6 6 1)		(164)		
225-h	(425)	(4 34)	(5 212)	230-h	(62 2)	(62 1)	(6 1 2)
	(1410)				(6 1 1)	(5 42)	(5 22)
225-k	(676)	(4 14)					

Table 2. Structure types of inorganic compounds [3] with space group (SG) numbers and Wyckoff sequence (WS). The numbers of the ($T_{1} T_{2} T_{3}$) values of the characteristic Wyckoff positions like (496) of 230-g5 and (488) of 230-f1 positions (Table 1) are added for the x values of $\mathrm{Ni}_{3} \mathrm{Ga}_{4}\left(230-g 5^{\prime} f 1 a\right)$ close to the $x=0.375$ or $x=0$ values of (496) or (488) packings [6,9], or equivalent positions $g 5^{\prime}$ as explained in the text.

Compound	SG-WS	Compound	SG-WS	Compound	SG-WS
$\mathrm{Cd}_{0.5} \mathrm{Bi}_{1.5} \mathrm{O}_{2.75}$	230-da	$\mathrm{NdO}_{1.5}$	229-g3a	$\mathrm{Dy}_{6} \mathrm{Fe}_{16} \mathrm{O}$	229-h5e3ca
$\mathrm{Ni}_{3} \mathrm{Ga}_{4}$	230-g5' $11 a$	$\mathrm{LiCa}_{4} \mathrm{~B}_{3} \mathrm{~N}_{6}$	229-e3cba	$\mathrm{Ag}_{1.8} \mathrm{Au}_{0.2} \mathrm{~S}$	229-h7dcba
W	229-a	$\mathrm{U}_{4} \mathrm{Re}_{7} \mathrm{Si}_{6}$	229-e3dca	$\mathrm{Tl}_{7} \mathrm{Sb}_{2}$	229-h6f3e3a
AuSb_{3}	229-ba	$\mathrm{Ca}_{4} \mathrm{Rh}_{3} \mathrm{H}_{12}$	229-e2dcb	$\mathrm{Li}_{2} \mathrm{Zr}_{6} \mathrm{MnCl}_{15}$	229-h3e2dba
PtHg_{4}	229-ca	$\mathrm{LiBa}_{4} \mathrm{Sb}_{3} \mathrm{O}_{12}$	229-e3dcba	$\mathrm{Th}_{6} \mathrm{Br}_{15} \mathrm{H}_{7}$	229-h3f1e2b
$\mathrm{Pt}_{3} \mathrm{O}_{4}$	229-cb	$\mathrm{Ru}_{3} \mathrm{Sn}_{7}$	229-f3e4d	C	227-a
SF_{6}	229-e2a	$\mathrm{CaCu}_{3} \mathrm{Ti}_{4} \mathrm{O}_{12}$	229-h3cba	NaTl	227-ba
$\mathrm{Eu}\left(\mathrm{NH}_{3}\right)_{6}$	229-e3a	$\mathrm{Nb}_{2} \mathrm{~F}_{5}$	229-h3e2b	SiO_{2}	227-ca
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SrCl}_{4}$	229-cba	$\mathrm{Zr}_{6} \mathrm{CoCl}_{15}$	229-h3e2ba	MgCu_{2}	227-cb
C	229-f3	$\mathrm{Ca}_{3} \mathrm{Ag}_{8}$	229-h6e2c	CsNbN_{2}	227-cba
$\mathrm{Ag}_{2} \mathrm{~S}$	229-dba	$\mathrm{Ce}_{3} \mathrm{Ni}_{6} \mathrm{Si}_{2}$	229-h5e3c	$\mathrm{H}_{2} \mathrm{O}$	227-e1a

Table 2 (continued).

Compound	SG-WS	Compound	SG-WS	Compound	SG-WS
$\mathrm{Ti}_{2} \mathrm{C}$	227-e2c	$\mathrm{Cu}_{4} \mathrm{Mn}_{3} \mathrm{Bi}_{4}$	$225-f 1 e 1^{\prime} d c$	$\mathrm{Th}_{3} \mathrm{P}_{4}$	220-c3a
$\mathrm{MgAl}_{2} \mathrm{O}_{4}$	227-e2cb	$\mathrm{K}_{3} \mathrm{Rh}\left(\mathrm{NO}_{2}\right)_{6}$	225-h1e2cba	$\mathrm{Au}_{3} \mathrm{Y}_{3} \mathrm{Sb}_{4}$	220-c3ba
LiTiO_{2}	227-e2dc	$\mathrm{Mn}_{6} \mathrm{Bi}\left(\mathrm{PO}_{4}\right) \mathrm{O}_{8}$	225-f1f3' ${ }^{\prime}$ ba	$\mathrm{Pu}_{2} \mathrm{C}_{3}$	$220-d 2^{\prime} c 2$
HTaWO_{6}	227-f3c	$\mathrm{RuAl}_{0.67} \mathrm{Sn}_{6} \mathrm{O}_{8}$	$225-f 3^{\prime} f 2^{\prime} e 2 c a$	$\mathrm{La}_{4} \mathrm{GeC}_{4}$	$220-d 2^{\prime} c 2 a$
$\mathrm{Fe}_{3.7} \mathrm{O}_{4}$	227-e2dca	$\mathrm{KY}_{3} \mathrm{~F}_{10}$	225-i3f1e2c	$\mathrm{Li}_{0.64} \mathrm{Pt}_{3} \mathrm{O}_{4}$	218-e3da
$\mathrm{Al}_{2}(\mathrm{OH})_{3} \mathrm{~F}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	227-f3cb	$\mathrm{Th}_{6} \mathrm{Mn}_{23}$	$225-f 2 f 3^{\prime} e 1^{\prime} d a$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	218-e2da
$\mathrm{ThZr}_{2} \mathrm{H}_{7}$	227-f5cba	$\mathrm{Mg}_{3} \mathrm{Ni}_{20} \mathrm{~B}_{6}$	$225-h 3 f 1^{\prime} e 1^{\prime} c a$	SiF_{4}	217-c2a
AgSbO_{3}	227-f4dc	$\mathrm{Zr}_{6} \mathrm{Zn}_{23} \mathrm{Si}$	$225-f 2 f 33^{\prime} e 1^{\prime} d b a$	$\mathrm{Li}_{5} \mathrm{~B}_{4}$	217-c1c2 ${ }^{\prime}$
$\mathrm{KTaWO}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$	227-f3dc	$\mathrm{Sc}_{11} \mathrm{Ir}_{4}$	$225-f 1 f 3^{\prime} e 1^{\prime} d b a$	$\mathrm{Tl}_{3} \mathrm{VS}_{4}$	217-c2ba
$\mathrm{As}_{2} \mathrm{O}_{3}$	227-f3e2	$\mathrm{KCo}\left[\mathrm{Co}(\mathrm{CN})_{6}\right] \cdot 10 \mathrm{H}_{2} \mathrm{O}$	225-f3e1e2e1' ${ }^{\prime}$ ba	$\mathrm{Ta}_{2} \mathrm{O}$	217-c1c3ba
$\mathrm{Al}_{2} \mathrm{O}_{3}$	227-e $1 e 2 d a$	$\mathrm{Zr}_{9} \mathrm{Co}_{7} \mathrm{In}_{14}$	225-i3f2e1cba	ZnS	216-ca
$\mathrm{Ca}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$	227-f $3^{\prime} d c a$	$\mathrm{K}_{19} \mathrm{~Pb}_{8} \mathrm{O}_{4}(\mathrm{OH})_{3}$	$225-h 3 f 3^{\prime} e 1 e 1^{\prime} b a$	MgAgAs	216-cba
SbO_{2}	227-f4dcba	$\mathrm{Nb}_{3} \mathrm{Cl}_{6}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}$	225-h3f $2 e 1 e 1^{\prime} c$	$\mathrm{Li}_{2} \mathrm{AgSb}$	216-dcba
$\mathrm{Mn}_{3} \mathrm{Ni}_{2} \mathrm{Si}$	227-f3'e 2 c	$\mathrm{Na}_{14} \mathrm{Ba}_{14} \mathrm{CaN}_{6}$	225-f1f3'e $1 e 1^{\prime} d a$	KClO_{4}	216-e 1 ba
$\mathrm{TlNb}_{2} \mathrm{O}_{5} \mathrm{~F}$	227-f3e1' ${ }^{\text {c }}$	$\mathrm{Ni}_{20} \mathrm{AlB}_{14}$	225-h3f $3 f 2^{\prime} e 1^{\prime} a$	CuI	$216-e 1^{\prime} c a$
$\mathrm{Na}_{8} \mathrm{SnSb}_{4}$	227-f4'e2ca	$\mathrm{Ca}_{11} \mathrm{Ga}_{7}$	$225-h 3 f 3 f 2^{\prime} e 1^{\prime} b a$	$\mathrm{Be}_{5} \mathrm{Au}$	$216-e 1^{\prime \prime}$ ca
$\mathrm{W}_{6} \mathrm{Fe}_{6} \mathrm{C}$	227-f3' $e 2 c b$	$\mathrm{Y}_{6} \mathrm{Mn}_{23} \mathrm{H}_{8.3}$	225-f1f3f2' $e 1 d b a$	ZnSO_{4}	216-e1ca
$\mathrm{Cu}_{2} \mathrm{Cr}_{2} \mathrm{Te}_{4}$	227-f5e2cb	$\mathrm{Ni}_{20} \mathrm{Al}_{3} \mathrm{~B}_{9.75}$	225-h3f 1^{\prime} e $e 2 e 1^{\prime}$ ca	$\mathrm{Na}_{1.67} \mathrm{AlSiO}_{4.33}$	216-e1dcba
$\mathrm{Tl}_{2} \mathrm{Nb}_{2} \mathrm{O}_{6.07}$	227-f 3^{\prime} e 1 da	$\mathrm{Rb}_{5} \mathrm{Tc}_{6} \mathrm{~S}_{14}$	225-h4f3f1'e $1 e 1^{\prime}$ ca	$\mathrm{K}_{9}\left(\mathrm{C}_{70}\right)$	216-e1e1'da
$\mathrm{CuIn}_{2} \mathrm{Se}_{3} \mathrm{I}$	227-f5e2cba	$\mathrm{K}_{7} \mathrm{Mo}_{6} \mathrm{Se}_{8}(\mathrm{CN})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$	225-h4f3f $1^{\prime} e 1 e 2 e 1^{\prime} c a$	$\mathrm{Ba}_{2} \mathrm{Cu}_{2} \mathrm{WYO}_{5.67}$	216-f2dcba
$\mathrm{W}_{4} \mathrm{Co}_{2} \mathrm{C}$	227- $f 3^{\prime} e 2 d c$	$\mathrm{Th}_{6} \mathrm{Mn}_{23} \mathrm{H}_{16}$	225-h1f $2 f 3^{\prime} f 1^{\prime} e 1^{\prime} d a$	$\mathrm{Cu}_{2} \mathrm{Se}$	$216-e 1 e 1^{\prime} d c a$
$\mathrm{Sm}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$	227-f $4 e 2 d c$	$\mathrm{Th}_{6} \mathrm{Mn}_{23} \mathrm{H}_{16.2}$	225-i1f $1 f 3 f 2^{\prime} e 1 d b a$	MoSBr	$216-e 1 e 1^{\prime} e 1^{\prime \prime}$
$\mathrm{Zn}_{4} \mathrm{Nb}_{8} \mathrm{C}_{3}$	227-f3e2dca	$\mathrm{Cu}_{2} \mathrm{O}$	224-ba	$\mathrm{Be}_{4} \mathrm{TeO}_{7}$	216-f $2 e 1^{\prime} c a$
$\mathrm{Pd}_{3.5} \mathrm{Te}$	227-f5e2dca	$\mathrm{Ag}_{2} \mathrm{O}_{2.5}$	224-db	$\mathrm{Mo}_{4} \mathrm{GaS}_{8}$	$216-e 1 e 1^{\prime} e 1^{\prime \prime} a$
$\mathrm{K}_{1.17} \mathrm{Bi}_{2.33} \mathrm{O}_{5.87}\left(\mathrm{H}_{2} \mathrm{O}\right)$	227-f3 ${ }^{\prime}$ e 1 dca	$\mathrm{H}_{2} \mathrm{O}$	224-e $1 a$	$\mathrm{CsMgAsO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$	216-f1'e1cba
$\mathrm{Al}_{2} \mathrm{O}_{3}$	$227-f 4^{\prime} e 2 e 1^{\prime} c$	$\mathrm{Si}\left(\mathrm{CN}_{2}\right)_{2}$	224-e 1 ba	$\mathrm{Cu}_{2} \mathrm{Al}_{4} \mathrm{O}_{7}$	216-f $2 e 1^{\prime} d c a$
$\mathrm{AgPb}_{2} \mathrm{Cl}_{3}(\mathrm{OH}) \mathrm{F}$	227-f4e2e ${ }^{\prime}$ c	$\mathrm{H}_{2} \mathrm{O}$	224-g2e1	$\mathrm{Co}_{2.95} \mathrm{O}_{4}$	$216-e 1 e 1^{\prime} e 1^{\prime \prime} d a$
$\mathrm{Tl}_{1.5} \mathrm{Ta}_{1.5} \mathrm{~W}_{0.5} \mathrm{O}_{6}$	227-f3'e2e1d	$\mathrm{Cr}_{3} \mathrm{Si}$	223-ca	$\mathrm{Cu}_{2} \mathrm{Fe}(\mathrm{CN})_{6}$	216-f $1 f 1^{\prime} c b a$
$\mathrm{Li}_{13} \mathrm{In}_{3}$	227-f5e2dcba	$\mathrm{Nb}_{3} \mathrm{SnH}$	223-dca	$\mathrm{Cu}_{2} \mathrm{Fe}(\mathrm{CN})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{0.5}$	216-f1 $f 1^{\prime} d c b a$
$\mathrm{Ti}_{2} \mathrm{NiH}$	227-f 3^{\prime} e $2 d c b a$	$\mathrm{Pt}_{3} \mathrm{O}_{4}$	223-ec	$\mathrm{Hg}_{5} \mathrm{In}_{2} \mathrm{Se}_{8}$	216-g2e1e1" $b a$
Cu	225-a	$\mathrm{NaPt}_{3} \mathrm{O}_{4}$	223-еса	$\mathrm{Yb}_{0.88} \mathrm{~S}$	216-g2f2dcba
NaCl	225-ba	$\mathrm{AuNb}_{3} \mathrm{H}_{2.9}$	223-i4dca	$\mathrm{Ag}_{3.2} \mathrm{Hg}_{2.4} \mathrm{SiSe}_{6}$	216-f $2 e 1 e 1^{\prime} e 1^{\prime \prime} a$
CaF_{2}	225-ca	Po	221-a	$\mathrm{Zr}_{2} \mathrm{C}_{1.2} \mathrm{H}_{0.8}$	216-g2f2e1dba
BiF_{3}	225-cba	CsCl	221-ba	$\mathrm{Cr}_{4} \mathrm{Al}_{13} \mathrm{Si}_{4}$	216-g1'f $1^{\prime} e 1 e 1^{\prime} a$
$\mathrm{K}(\mathrm{CN})$	$225-e 1^{\prime} a$	$\mathrm{Cu}_{3} \mathrm{Au}$	221-ca	$\mathrm{Ru}_{4} \mathrm{~Pb}_{4} \mathrm{O}_{13}$	$216-g 1^{\prime} f 1^{\prime} e 1 e 1^{\prime \prime} a$
CuPt_{7}	225-dba	ReO_{3}	221-da	$\mathrm{Ca}_{3} \mathrm{Er}_{3} \mathrm{Ge}_{2} \mathrm{BO}_{13}$	216-f2e1e1' $1^{\prime \prime}$ dcba
NaSbF_{6}	225-e $1 b a$	CaTiO_{3}	221-dba	$\mathrm{Mn}_{5} \mathrm{Ni}_{2} \mathrm{Bi}_{4}$	216-g1'f $1^{\prime} e 1 e 1^{\prime} b a$
$\mathrm{Cu}_{1.8} \mathrm{~S}$	225-e 1^{\prime} ca	NbO	221-dc	$\mathrm{Bi}_{1.6} \mathrm{Y}_{0.4} \mathrm{Sn}_{2} \mathrm{O}_{7}$	$216-g 1^{\prime} f 1^{\prime} e 1 e 1^{\prime \prime} c a$
$\mathrm{K}_{2} \mathrm{PtCl}_{6}$	225-e2ca	$\mathrm{U}_{4} \mathrm{~S}_{3}$	221-dca	$\mathrm{Mo}_{3} \mathrm{Ni}_{2} \mathrm{P}_{1.18}$	216-g1'f $1 e 1 e 1^{\prime} e 1^{\prime \prime} a$
$\mathrm{NaBaLiNiF}_{6}$	225-dcba	$\mathrm{Ga}(\mathrm{CN})_{3}$	221-e3a	$\mathrm{Na}_{11} \mathrm{Ca}_{6.5} \mathrm{P}_{8}$	$216-g 2^{\prime} f 1 e 1 e 1^{\prime} e 1^{\prime \prime} d c a$
$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{FeF}_{6}$	225-e1cba	TiC_{2}	221-f1a	$\mathrm{AuTa}_{5} \mathrm{~S}$	216-g1f1ele1'e1' $e 1^{\prime \prime \prime}$
BaBiO_{3}	225-e2cba	CaB_{6}	221-f $2 a$	$\mathrm{Fe}_{4} \mathrm{C}$	215-e2a
HCl	225-h3a	$\mathrm{Mo}_{3} \mathrm{~N}_{2}$	221-dcba	$\left(\mathrm{NH}_{4}\right) \mathrm{Br}$	215-e1ba
UB_{12}	225-i3a	CsN_{3}	221-e1ba	$\mathrm{Cu}_{3} \mathrm{AsS}_{4}$	215-e2ca
$\mathrm{CdCo}_{0.67}(\mathrm{CN})_{4}$	225-e1e1'ba	$\left(\mathrm{NH}_{4}\right) \mathrm{Br}$	221-g1ba	$\mathrm{Cu}_{3} \mathrm{VS}_{4}$	215-e2da
$\mathrm{NaNb}_{1.25} \mathrm{~F}_{6}$	225-e1dba	$\mathrm{K}_{0.9} \mathrm{Li}_{0.1} \mathrm{TaO}_{3}$	221-e3cba	$\mathrm{K}_{3}\left(\mathrm{SO}_{4}\right) \mathrm{F}$	215-e1cba
$\mathrm{Cs}_{2} \mathrm{MoOBr}_{5}$	225-e $1 e 2$ ca	CsHgCl_{3}	221-e3dba	$\mathrm{AgB}(\mathrm{CN})_{4}$	215-e1e2ba
$\mathrm{RuCl}_{2} \mathrm{~N}_{2}\left(\mathrm{NH}_{3}\right)_{5}$	225-e1e1' ca	$\mathrm{K}_{3}\left(\mathrm{SO}_{4}\right) \mathrm{F}$	221-g1cba	$\mathrm{Li}_{8} \mathrm{Al}_{3} \mathrm{Si}_{5}$	215-e2e2'dcba
$\mathrm{Mg}_{6} \mathrm{MnO}_{8}$	225-e2dca	$\mathrm{Pd}_{0.75} \mathrm{H}$	221-h2ba	$\mathrm{Ag}_{3} \mathrm{AuTe}_{2}$	214-f1'e1'a
$\mathrm{Cs}_{2} \mathrm{LiCo}(\mathrm{CN})_{6}$	225-e1e1' cba	YF_{3}	221-g2dca	$\mathrm{Ca}_{3} \mathrm{PI}_{3}$	214-h6' ${ }^{\text {g6a }}$
$\mathrm{CrFe}_{7} \mathrm{C}_{0.45}$	225-e2dcba	$\mathrm{Fe}_{13} \mathrm{Ge}_{3}$	221-g2dcba	SrSi_{2}	213-c3a
$\mathrm{TlPd}_{3} \mathrm{O}_{4}$	225-f3dba	$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{SnF}_{7}$	221-g1e2cba	Mn	213-d3c3
$\mathrm{Cu}_{3} \mathrm{SbS}_{4}$	225-f $2 d c$	$\mathrm{Ba}_{8} \mathrm{Y}_{3} \mathrm{Pt}_{4} \mathrm{O}_{17.5}$	221-h2g2e1dca	$\mathrm{Mo}_{3} \mathrm{Al}_{2} \mathrm{C}$	213-d3c3a
$\mathrm{Co}_{9} \mathrm{~S}_{8}$	225-f $2^{\prime} e 2 c a$	$\mathrm{Ce}_{8} \mathrm{Pd}_{24} \mathrm{Sb}$	221-h2g2f $1 e 2 a$	Si	206-c2
$\mathrm{PtGa}_{2} \mathrm{In}_{6} \mathrm{O}_{8}$	225-f3' $e 2 c a$	$\mathrm{Sr}_{8} \mathrm{Rh}_{5} \mathrm{H}_{23}$	221-h1g2f1e1dba	$\mathrm{H}_{2} \mathrm{~S}$	205-a
$\mathrm{Na}_{6}\left(\mathrm{SO}_{4}\right)_{2} \mathrm{ClF}$	225-f3e1cba	$\mathrm{Ta}_{1.08} \mathrm{O}$	221-h2g2f1e1dcba	$\mathrm{FeS}_{2}\left(\mathrm{SiO}_{2}\right)$	205-c1'a
AgPF_{6}	225-h2e1ba	$\mathrm{K}_{9} \mathrm{U}_{6} \mathrm{BiO}_{24}$	221-h2g2f2e1dcba	CO_{2}	205-c1a
$\mathrm{Ba}_{2} \mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{6}$	225-h1e2ca	$\mathrm{Na}_{2} \mathrm{Nb}_{7} \mathrm{Cl}_{8} \mathrm{~F}_{13}$	221-j3h1f1e1ca	CuCl	205-c 1 c1 ${ }^{\prime}$
$\mathrm{Ag}_{6} \mathrm{Hg}\left(\mathrm{NO}_{3}\right) \mathrm{O}_{8}$	$225-f 3 e 1^{\prime} d b a$	Ga	220-a	$\mathrm{Na}_{9.7} \mathrm{C}_{60}$	202-f1cba

Table 2 (continued).

Compound	SG-WS	Compound	SG-WS	Compound	SG-WS
W($\left.\mathrm{W}_{0.42} \mathrm{Al}_{5.58}\right) \mathrm{Ge}$	200-f3ba	$\mathrm{Ba}_{3} \mathrm{Fe}_{2} \mathrm{Cl}_{2} \mathrm{O}_{5}$	$199-b 2^{\prime} b 4^{\prime \prime} a 2 a 1^{\prime} a 3^{\prime}$	ZrSO	$198-a 2 a 2^{\prime \prime} a 2^{\prime \prime \prime \prime \prime \prime}$
$\mathrm{RbHg}\left(\mathrm{NO}_{2}\right)_{3}$	200-f3dba	CO	$198-a 2^{\prime} a 1^{\prime}$	KAlOCl_{2}	198-a1a1'a1"
$\mathrm{Na}_{0.28} \mathrm{Co}_{0.74} \mathrm{Pt}_{6} \mathrm{O}_{8}$	200-i2f3a	FeSi	198-a2a3'	$\mathrm{SrBr}(\mathrm{OH})$	198-a2a3a2 ${ }^{\prime \prime \prime} a 2^{\prime \prime \prime \prime \prime}$
UCo	199-a2a2"	PdF_{2}	198-a1a2 $2^{\prime \prime} a 2^{\prime \prime \prime \prime \prime \prime}$	NiGa_{4}	197-e4d4c2c2'
$\underline{\mathrm{Hg}_{3} \mathrm{~S}_{2} \mathrm{Cl}_{2}}$	$199-b 2^{\prime} a 1 a 1^{\prime}$	NiSbS	198-a1a3' $3^{\prime \prime}$ "		

Table 3. Combinations of Wyckoff positions (SG-WS) to a packing of a characteristic Wyckoff position (WP).

SG-WS	SG-WP	SG-WS	SG-WP
$230-g 5 b$	$221-a$	$191-b 8 a 8$	$191-a 5$
$230-f 1 a$	$221-a$	$191-b 5 a 5$	$191-a 3$
$230-d c$	$223-c$	$187-d 5 a 5$	$194-c 7$
$229-e 2 d c$	$225-a$	$180-d 11 c 11$	$166-d 9$
$229-e 2 d$	$221-c$	$180-d 5 c 5$	$180-c 4$
$229-b a$	$221-a$	$166-e 10 d 10$	$229-b$
$227-d c$	$225-a$	$166-e 5 d 5$	$166-d 4$
$227-b a$	$229-a$	$166-b 12 a 12$	$225-a$
$225-b a$	$221-a$	$166-b 10 a 10$	$221-a$
$223-d c$	$229-d$	$166-b 5 a 5$	$166-a 4$
$221-d c$	$229-b$	$141-d 10 c 10$	$139-a 8$
$221-c a$	$225-a$	$141-d 9 c 9$	$225-a$
$221-b a$	$229-a$	$141-d 7 c 7$	$139-a 4$
$220-b a$	$230-d$	$141-b 10 a 10$	$221-a$
$216-e 1 e 1^{\prime \prime}$	$225-a$	$141-b 9 a 9$	$229-a$
$216-d c b a$	$229-a$	$139-b 7 a 7$	$221-a$
$216-c a$	$227-a$	$139-b 5 a 5$	$123-a 4$
$216-b a$	$221-a$	$123-d 6 a 6$	$225-a$
$214-h 6 a$	$225-a$	$123-d 5 a 5$	$229-a$
$214-d c$	$230-c$	$123-d 3 a 3$	$139-a 4$
$214-b a$	$230-b$	$123-c 6 a 6$	$123-a 7$
$212-d 4 b$	$227-c$	$123-c 5 a 5$	$123-a 6$
$212-b a$	$214-a$	$123-b 7 a 7$	$221-a$
$194-d 5 c 5$	$191-c 4$	$123-b 5 a 5$	$123-a 3$
$191-g 8 f 8$	$191-f 5$	$107-a 7 a 7^{\prime}$	$221-a$
$191-g 5 f 5$	$123-a 3$	$82-c 7 a 7$	$227-a$
$191-d 7 c 7$	$191-c 5$	$82-c 5 a 5$	$141-a 7$
$191-b 11 a 11$	$139-a 8$		

the present investigation. The number 1 or 8 is added to the Wyckoff position. A layered structure with alternating square net layers for example corresponds to the 123-a8 position. A slightly deformed primitive cubic packing can be found for 123-a5 at lattice constants close to $c / a=1$. The primitive cubic packing with T_{i} values (6 128) is the fifth packing in 123-a position (Table 1). The same applies for other Wyckoff positions like 75-a, 79-b, 83-c, etc. [7] with the same sequences of T_{i} values as the characteristic Wyckoff position 123-a.

The present analysis of cubic structures with less than two parameters [3] demonstrates the preference of few combinations as is outlined by few examples. The atoms of the characteristic Wyckoff position 198-a
(position (4a) $x x x$ of space group number 198, $P 2{ }_{1} 3$) for example form an fcc sphere packing with T_{i} values (12 624) at $x=0$, and two packings with T_{i} values (6612) at $x=(3-\sqrt{5}) / 8$ and (6126) at $x=$ 0.125. The asymmetric range of x values is $0 \leq x \leq$ $1 / 8$. The fcc packings at $x=0,0.25,0.5$ and 0.75 are characterized as 198-a1, $a 1^{\prime}, a 1^{\prime \prime}$ or $a 1^{\prime \prime \prime}$, respectively. The KAlOCl_{2} structure with Cl, O and $\mathrm{K}+$ Al atoms in 198-a positions (oxygen atoms with an occupancy 0.5) at $x=0,0.25$ and 0.48 is characterized by $198-a 1 a 1^{\prime} a 1^{\prime \prime}$ (Table 2). The NiSbS (ullmannite) structure with Ni, Sb and S atoms in 198- a positions at $x \approx 0.02,0.37$ and 0.62 gets the symbol 198-a1a3'a3'。 The $a 3^{\prime}$ and $a 3^{\prime \prime}$ positions correspond to the sphere packing (6 126) at $x=3 / 8$ and $5 / 8$. FeSi (fersilicite) with Si and Fe in 198- a position at $x \approx 0.09$ and 0.39 is characterized by 198-a2a3'. The a3 position at $x \approx 1 / 8$ is not occupied.

The Wyckoff position 216-e ($\begin{gathered}x\end{gathered} x$) with the asymmetric range $0<x \leq 1 / 8$ contains only the (61212) packing at $x=1 / 8(216-e 1)$ and equivalent positions at $x=3 / 8\left(e 1^{\prime}\right), x=5 / 8\left(e 1^{\prime \prime}\right)$ and $x=7 / 8\left(e 1^{\prime \prime \prime}\right)$. The $x=0.125$ or 0.12 values of KClO_{4} (216-e1ba), $\mathrm{ZnSO}_{4}(216-e 1 c a)$ or $\mathrm{Na}_{1.67} \mathrm{AlSiO}_{4.33}$ (216-e1dcba) correspond to a (61212) packing ($e 1$) in addition to NaCl (216-ba or $225-b a$), ZnS (216-ca), LiMgPdSn $(216-d c b a)$ or $\mathrm{NaTl} \widehat{=}(\mathrm{LiMg})(\mathrm{PdSn})$ structures. The atoms of the invariant positions can be combined to the primitive cubic packing of Po (221-a), the diamond structure (227-a) or bcc W (229-a) (Table 3). The S , Mo and Br atoms of $\mathrm{MoSBr}\left(216-e 1 e 1^{\prime} e 1^{\prime \prime}\right)$ have the $x \approx 0.12,0.35$ and 0.62 values close to $1 / 8$, $3 / 8$ and $5 / 8$, respectively. The fcc sphere packing (225-a) is obtained for the combination of S and Br atoms (216-e1e1") (Table 3). The Pr_{2} structure with $x \approx 0.11,0.36$ and 0.63 corresponds to the same structure type. This structure, which was determined later than the MoSBr structure, is not listed in Table 2. The same applies for the $\mathrm{Ti}_{2} \mathrm{Ni}, \mathrm{CdNi}, \mathrm{Nb}_{5} \mathrm{Ni}$ and $\mathrm{NaAg}_{3} \mathrm{~S}_{2}$ structures [3] of the $\mathrm{Mn}_{3} \mathrm{Ni}_{2} \mathrm{Si}$ structure type (227-f3' $e 2 c$) or the $\mathrm{W}_{3} \mathrm{Fe}_{3} \mathrm{C}, \mathrm{Ti}_{3} \mathrm{NiAl}_{2} \mathrm{C}$ and $\mathrm{BaCd}_{2} \mathrm{Cl}_{6} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ structures of the $\mathrm{W}_{4} \mathrm{Co}_{2} \mathrm{C}$ struc-
ture type (227-f3'e2dc). The (8 34 4) and (12 6 24) sphere packings $f 3$ and $e 2$ are also observed in $\mathrm{As}_{2} \mathrm{O}_{3}$ or $\mathrm{Sb}_{2} \mathrm{O}_{3}(227-f 3 e 2)$ or $\mathrm{W}_{6} \mathrm{Fe}_{6} \mathrm{C}$ (227-f3' $e 2 c b$). The sphere packings are added to the MgCu_{2} Laves phase (227-cb) or spinel $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ (227-e2cb). The numbers of structure types could be reduced further for consideration of the structures with the longest sequence of Wyckoff letters like $\mathrm{Ti}_{2} \mathrm{NiH}\left(227-f 3^{\prime} e 2 d c b a\right)$ or $\mathrm{Ca}_{3} \mathrm{Er}_{3} \mathrm{Ge}_{2} \mathrm{BO}_{13}\left(216-f 2 e 1 e 1^{\prime} e 1^{\prime \prime} d c b a\right)$ and omitting the first 14 structures of space group 216 with shorter sequences from ZnS (216-ca) to $\mathrm{Mo}_{4} \mathrm{GaS}_{8}$ (216-e $e 1^{\prime} e 1^{\prime \prime} a$) for example.

An extended Table 3 with all possible combinations would allow a numerical analysis of crystal structures like the pc, diamond, bcc and fcc packings of 216-ba, 216-ca, 216-dcba and 216-e1e1". The repulsive or attractive interactions of $\mathrm{K}, \mathrm{Cl}, \mathrm{Zn}, \mathrm{S}$, $\mathrm{Na}, \mathrm{Al}, \mathrm{Si}, \mathrm{S}$ and Br atoms in $\mathrm{KClO}_{4}(216-e 1 b a)$, ZnSO_{4} (216-e1ca), $\mathrm{Na}_{1.67} \mathrm{AlSiO}_{4.33}$ (216-e1dcba) or $\mathrm{MoSBr}\left(216-e 1 e 1^{\prime} e 1^{\prime \prime}\right)$ can be analyzed by structure maps [17, 18]. The determination of combinations (Table 3) is also necessary for the analysis of the habit of minerals.

The morphological lattice of single crystals can have another symmetry than the structural lattice [19-22]. Octahedral or rhombododecahedral crystals of NaCl are expected from the structural lattice. Planes with low $h k l$ values and a high density of atom positions like the $\left\{\begin{array}{lll}1 & 1 & 1\end{array}\right\}$ planes of octahedra or the Dirichlet domain with $\left\{\begin{array}{lll}1 & 1 & 0\end{array}\right\}$ planes of the lattice point $\mathrm{P}=\mathrm{Na}$ or Cl are derived from Bravais' or Wulff's theory [2125]. The observed cubic form can be related to the Dirichlet domain of a primitive cubic packing (6 12 8) with $T_{1}=6\left\{\begin{array}{lll}1 & 0 & 0\end{array}\right\}$ planes of $\mathrm{P}=\mathrm{Na}=\mathrm{Cl}$ as morphological lattice. The cleavage rhombohedron with $\mathrm{P}=\mathrm{Ca}=\mathrm{C}$ of the CaCO_{3} (calcite) structure is another well-known example [23]. The analogous analysis of structures like the $\mathrm{KClO}_{4}, \mathrm{ZnSO}_{4}, \mathrm{Na}_{1.67} \mathrm{AlSiO}_{4.33}$ or MoSBr structures reduces each structure to two packings. These packings are sphere, layer or rod packings [26]. The Dirichlet domain of (6 12 12) or (6 128) (cubic crystals like NaCl) would be expected for KClO_{4} depending on the dominance of oxygen or $\mathrm{K}+\mathrm{Cl}$ atoms. Plate-like crystals are observed for MoS_{2} (molybdenite), $\mathrm{Te}_{2} \mathrm{SBi}_{2}$ (tetradymite), $\mathrm{Fe}_{2} \mathrm{O}_{3}$ (hematite), FeTiO_{3} (ilmenite), PbCO_{3} (cerussite) or C (graphite) with (6 6 6), (6 6 12), (4 3 6), (6 68) or (3 6 3) layered packings of atoms, rod-like crystals for NiS (millerite), $\mathrm{Pb}\left(\mathrm{CO}_{3}\right)$ (cerussite) or TiO_{2} (rutile) with rod-like packings (2212), (2 614) or (2 86).
$\mathrm{Pb}\left(\mathrm{CO}_{3}\right)$ is an example with different plate- or rodlike habit of crystals, depending on the dominance of $\mathrm{Pb}-\mathrm{Pb}$ or $\left(\mathrm{CO}_{3}\right)-\left(\mathrm{CO}_{3}\right)$ interactions. The $\mathrm{A}=\mathrm{Pb}$ or $\mathrm{B}=$ carbon atoms of CO_{3} groups have an increased density in layers or rods. The Dirichlet domains of sphere packings should have planes with low $h k l$ values and high densities of atoms like the $\{100\}$ planes of the primitive cubic packing (6 12 8) or $\{1000\}$ and $\{0001\}$ planes of the primitive hexagonal packing ((8 126) like the Fe atoms in FeS , pyrrhotite). The $\{110\}$ planes of the Dirichlet domain of the (12 6 24) lattice complex as an example have a lower density than the $\{111\}$ planes of octahedra in F centered cubic structures. Octahedral crystals are frequently observed for compounds with (12624) lattice complexes like $\mathrm{NaCl}, \mathrm{Fe}\left(\mathrm{S}_{2}\right), \mathrm{CaF}_{2}, \mathrm{As}_{2} \mathrm{O}_{3}, \mathrm{~K}_{2}\left(\mathrm{SiF}_{6}\right), \mathrm{MgAl}_{2} \mathrm{O}_{4}$ or CuFeS_{2}. The rhombododecahedron as Dirichlet domain of Mn atoms with (12624) lattice complex, however, has dense planes in $\mathrm{Mn}_{2} \mathrm{O}_{3}$ (bixbyite) with a cubic I centered cell $(h+k+l=2 n)$.

Conclusion

The analysis of inorganic structures as combinations of frameworks in invariant cubic structures [2733] can also be applied to structure types with one or more parameters. Standardized structure types of the Landolt-Börnstein compilation of inorganic compounds [3] with less than two parameters were analyzed for lattice complexes with increased self-coordination numbers ($T_{1} T_{2} T_{3}$) of nearest, second and third neighbors. Numerical calculations similar to trial-and-error or least-squares refinement calculations with n runs are necessary to find the nearest set of increased T_{i} values in standardized structures with n parameters $x, y, z, c / a, \cos \gamma$, etc.

The 1128 Wyckoff positions of the 230 space groups are reduced to 402 lattice complexes with a characteristic Wyckoff position at maximum symmetry [7]. Sequences 1, 2, 3, etc. of lattice complexes with increased ($T_{1} T_{2} T_{3}$) values were determined for most of the characteristic Wyckoff positions (Table 1). About 500 different $\left(T_{1} T_{2} T_{3}\right)$ values are estimated as the total number. The determination of all possible combinations like the combination of the invariant $\left(T_{1} T_{2} T_{3}\right)$ values [32] would give a very large number. The Wyckoff letters of characteristic lattice complexes like the (1a) position of space group number 123 (123-a) and equivalent positions 75-a, 79-b, 83-c, etc. [7] get the number 5 (123-a5) for structures close to a primi-
tive cubic packing with T_{i} values (6 128), which is the fifth value in Table 1. Some parameters like the c / a values close to $c / a=1$ for the primitive cubic packing are more frequent than other values [4,5]. The present analysis suggests a similar relation for x values in characteristic lattice complexes like the (834) or (12 624) sphere packings $227-f 3$ or $227-e 2$ at $x=5 / 16$ or 0.25 (Table 2). Combinations of Wyckoff positions like the combination of the Na and Cl position in $\mathrm{NaCl}(225-b a)$ to the primitive cubic packing of Na and Cl atoms with T_{i} values (6128) and the characteristic Wyckoff position 221-a (Table 3) are
useful for the determination of the crystal habit (cubes of NaCl crystals) and the repulsive $\mathrm{Na}-\mathrm{Na}$ or $\mathrm{Cl}-\mathrm{Cl}$ interactions in structure maps [$17,18,22$].

An increased number of ($T_{1} T_{2} T_{3}$) values of characteristic Wyckoff positions with increased numbers of variables is necessary for an extended analysis of structure types. Structures of organic molecules with low symmetry [34] could be analyzed for the center of gravity similar as N_{2} or $\mathrm{CO}_{2}(205-a)$. A new ($T_{1} T_{2} T_{3}$) set like 1-a6 is characterized by the lowest values of parameters $x, y, z, \cos \alpha$, etc. compared to $1-a 6^{\prime}$ etc. with increased values.
[1] E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, R. Gladyshevskii, TYPIX: Standardized data and crystal chemical characterization of inorganic structure types, Vol. 4. Gmelin Handbook of Inorganic and Organometallic Chemistry, Springer, Berlin (1994).
[2] G. Bergerhoff, M. Berndt, K. Brandenburg, T. Degen, Acta Crystallogr. B55, 147 (1999).
[3] P. Villars, K. Cenzual, Crystal structures of inorganic compounds. Landolt-Börnstein, Condensed Matter, Vol. 43, Springer, Berlin (2004).
[4] R. de Gelder, A. Janner, Acta Crystallogr. B61, 287 (2005).
[5] B. Constant, P. J. Shlichta, Acta Crystallogr. A59, 281 (2003).
[6] J. Hauck, K. Mika, Cryst. Res. Technol. 39, 655 (2004).
[7] W. Fischer, E. Koch, in Th. Hahn (ed.): International tables for crystallography, Vol. A, p. 825, D. Reidel, Dordrecht (1987).
[8] W. Fischer, Z. Kristallogr. 138, 129 (1973).
[9] J. Hauck, K. Mika, Z. Phys. Chem. 219, 439 (2005).
[10] H. Sowa, E. Koch, W. Fischer, Acta Crystallogr. A59, 317 (2003).
[11] W. Fischer, Z. Kristallogr. 140, 50 (1974).
[12] H. Sowa, E. Koch, Acta Crystallogr. A60, 158 (2004).
[13] H. Sowa, E. Koch, Acta Crystallogr. A61, 331 (2005).
[14] W. Fischer, Acta Crystallogr. A61, 435 (2005).
[15] W. Fischer, E. Koch, Acta Crystallogr. A58, 509 (2002).
[16] E. Koch, W. Fischer, in A. J. C. Wilson, E. Prince (eds): International tables for crystallography, Vol. C, p. 738, Kluver, Dordrecht (1999).
[17] J. Hauck, K. Mika, Progr. Solid State Chem. 28, 1 (2000).
[18] J. Hauck, K. Mika, Progr. Solid State Chem. 31, 149 (2003).
[19] H. Follner, H. Schwarz, Z. Kristallogr. 161, 35 (1982).
[20] J. D. H. Donnay, G. Donnay, Sov. Physics - Crystallogr. 6, 679 (1962).
[21] H. Follner, Fortschr. Miner. 66, 37 (1988).
[22] J. Hauck, K. Mika, W. Sager, Cryst. Res. Technol. 40, 917 (2005).
[23] W. Kleber, Einführung in die Kristallographie, p. 103 and 162, Verlag Technik, Berlin (1998).
[24] P. Hartman, Crystal growth: an introduction, p. 367, North Holland, Amsterdam (1973).
[25] G. Wulff, Z. Krystallogr. 45, 433 (1908).
[26] W.B. Jensen, J. Chem. Education 75, 817 (1998).
[27] E. Hellner, Z. Kristallogr. 175, 227 (1986).
[28] E. Hellner, Z. Anorg. Allg. Chem. 421, 37 (1976).
[29] E. Hellner, Z. Anorg. Allg. Chem. 421, 41 (1976).
[30] E. Hellner, Z. Anorg. Allg. Chem. 421, 49 (1976).
[31] E. Hellner, Z. Anorg. Allg. Chem. 421, 60 (1976).
[32] A. Niggli, Z. Kristallogr. 132, 473 (1971).
[33] A. L. Loeb, J. Solid State Chem. 1, 237 (1970).
[34] E. Pidcock, W.D. S. Motherwell, Acta Crystallogr. B60, 539 (2004).

