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Correlations of simple and complex physical, and chemical, biological and technological proper-
ties with chemical structure are reviewed. When an adequate training set of structures and experi-
mentally determined property values are available, the equations produced enable the prediction of
these properties of molecules as yet synthesized or indeed as yet unknown. Frequently they also of-
fer considerable insights into the manner in which the structure controls the property. Many further

applications of this methodology can be anticipated.
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Introduction

“Quantitative Structure Property Relationships’
(QSPR) and “Quantitative Structure — Activity Rela-
tionships’ (QSAR) relateaproperty or activity of inter-
est, defined quantitatively by a numerical measure, to
characteristic “descriptors’ derived theoretically from
the chemical structures of the compounds. In the last
35 years QSAR methodology has expanded exponen-
tially out of analytical chemistry; it is now indispensi-
blein the pharmaceutical chemistry and in drug design
[1-7].

QSPR has also become a well-established and
proven technique to correlate diverse physicochemi-
cal properties of compounds, ranging from simple to
complex, with molecular structure, through avariety of
“descriptors’ (as discussed below) [8, 9] of the chem-
ical structures. QSPR has received important contri-
butions from the groups of Abraham [10], Balaban
[11], Dearden[12], Hilal [13], Jurs[14], Kier and Hall
[15], Politzer [16], Randi¢ [17], Tringjstic [18] and
many others including ourselves Katritzky and Karel-
son [19]. The basic strategy isto find reliable quantita-
tive relationships, which can then be used for the pre-
diction of that same property for other structures not
yet measured or not yet prepared.

* Presented in part at the 7" Conference on Iminium Salts
(ImSaT-7), Bartholom& Ostal bkreis, September 6—8, 2005.

The molecular descriptors utilized for QSAR and
QSPR equations are numerical parametersthat are de-
fined quantitatively from a chemical structure alone.
Conventionally, molecular descriptors are classified in
five main classes: (i) constitutional, describing the
atomic composition of the compound, (ii) topological,
which describe the way in which the atoms in the com-
pounds are mutually bonded, (iii) geometric, (iv) elec-
trostatic relating respectively to geometry and charge
distribution, and (v) a very large number of quantum
chemical descriptors obtained by quantum mechanics
from the structure.

Most QSAR/QSPR treatments utilize a program to
calculate descriptors and then try to select asmall num-
ber of descriptorsin a purely empirical fashionto form
an equation. Thisis derived from a so-called “training
set” of compounds for which a property of interest has
been measured.

QSPR methodology has been aided by new soft-
ware tools, which allow chemists to elucidate and to
understand how molecular structure influences proper-
ties. Very importantly, this helps researchersto predict
and prepare structures with optimum properties. The
software is also of great assistance for chemica and
physical interpretation.

In the past fifteen years, our groups at the Uni-
versity of Florida, and at Tartu/Talinn Estonia,
have developed multipurpose statistical analysis soft-
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Fig. 1. Plot of experimental vs. calculated boiling points by
the 2-parameter model. Descriptors: 1) cubic root of the grav-
itational index; 2) hydrogen donor charge surface area.

ware in the form of the CODESSA (COmprehen-
sive Descriptors for Structure and Statistical Analy-
sis) program, recently updated as the CODESSA PRO
program [20].

For a satisfactory treatment, it is essential that good
quality input data is utilized in the form of a set of
structures and quantitative measurements of the prop-
erty, measured under the similar conditions with sat-
isfactory reproducibility and accuracy. The prepara-
tion of the input data utilizes a molecular editor or di-
rect import of the structures from a chemical database.
The 3D-geometries are generated and optimized us-
ing molecular mechanics and semiempirical quantum-
chemical methods such as MM+, AM1 asin MOPAC
[21] etc.

The next stage is the generation of descriptors.
By default, the CODESSA PRO program enables
507 basic descriptors to be calculated for each struc-
ture. These descriptors have diverse molecular and
atomic variations and hence, the total number of de-
scriptors can reach many thousands. Definitions of
these descriptors together with the original references
are freely available on the CODESSA PRO home-
page [20]. A search for the best set of molecular de-
scriptorsis based on various agorithms such as (i) the
Heuristic method or (ii) the Best Multilinear Regres-
sion (BMLR). The selected parameters are then com-
bined with the measured property valuesin a statistical
analysisin an attempt to extract an equation which uti-
lizes a small number of descriptors (usually not more
than four or five) to correlate the measured values of
the quantity satisfactorily. The higher the number of

compounds employed in the training set, the higher is
the acceptable number of descriptors. The descriptors
involved in any proposed model should not be highly
intercorrel ated.

The efficiency of QSPR models for prediction is
estimated using (i) internal validation, and (ii) cross-
validation (Leave One Out) methods, correlation both
for the full set and each training set. In these methods,
all available data are used for both fitting and assess-
ing. A new “ABC" method for cross validation, de-
veloped by our group, is based on a genera “Leave-
Group-Out” technique: here, the parent data set is di-
vided into three parts denoted A, B, C; a QSPR equa-
tion isderived from each pair of these subsets and used
to predict the third remaining set.

[llustrative applications of QSPR to simple physical
properties

Boiling points

Boiling point was one of the first properties for
which we derived QSPRs [22]. A training set of the
boiling points at atmospheric pressure of 298 diverse
compounds was fitted by a two-parameter equation
(Fig. 1). The dataset includes saturated and unsatu-
rated hydrocarbons, halogenated compounds, and hy-
droxyl, cyano, amino, ester, ether, carbonyl and car-
boxy! functionalities. The two descriptor straight-line
equation has ahigh R? of 0.954 and is robust as shown
by the statistically significant squared cross-correlated
correlation coefficient of 0.953. Importantly, the two
parameters selected by the descriptor forward selection
procedure, the cubic root of the gravitation index and
the hydrogen donor charged surface area, are physi-
caly well understandable. As its name suggests, the
gravitation index describes the distribution of the mass
of a molecule about its center of gravity and is con-
nected with dispersion and cavity-formation effectsin
liquids. The hydrogen donor charged surface areais a
measure of the propensity of a compound to form hy-
drogen bonds. Therefore, our 2-parameter QSPR equa-
tion reflects quantitatively the well known fact that the
boiling point of acompound dependson the mass of its
molecules and their tendency to stick together, and it is
equally well known that the most important attractive
force between moleculesis hydrogen bonding.

Melting points

The correlation and prediction of melting points is
a far more difficult task. The melting paint is defined
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Table 1. Nine-parameter model of melting points. The
squared correlation coefficient (R2) and the Fischer criterion
(F) relate to the model s involving the descriptor on the given
line and all descriptors above it.

Descriptor name R F
HDSA2 [Zefirov PC] 0.3829 273.63
Average valency oh atom H 0.5546 273.95
Total molecular surface area 0.7477 433.67
Average structural information content (1 order) 0.7504 329.17
Average information content (2 order) 0.8061 363.41
Maximum interaction of a C-H bond 0.8155 321.26
Average nuclephilic reactivity index 0.8256 294.27
BETA polarizability 0.8315 267.66
Symmetry number 0.8373 247.62
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Fig. 2. Plot of experimental vs. calculated melting points by

the 9-parameter model. R2 = 0.8373, F = 247.62, s= 30.19,
n=443.

as the temperature of the transition between the solid
and liquid phases. Phase transitions are complicated by
polymorphism: molecules that exist in different crys-
tal forms have their own distinct properties including
heat capacity and melting point. Additionally, mea-
surements of melting points are much affected by the
purity of a compound and experimental error. In such
asituation, it is necessary to restrict the range of struc-
tures. A correlation equation, shown in Table 1 and
Fig. 2, including nine descriptors (R? = 0.8373) was
developed for alarge set of 443 melting points of sub-
stituted benzenes[23].

The melting point is a challenging property for
physico-chemists to correlate, but also rewarding be-
cause as recently discussed [24], it can be used as a
tool for prediction or modeling other properties. For

more accurate correlation we need to be able to pre-
dict the crystal hahit (or habits) in which a compound
would crystallize and then estimate more exactly the
interactive forces of attraction and repulsion exist-
ing in the crystal. The crystal lattice into which each
molecule fits differs not only for each compound but
also for each polymorph. The melting point of a crys-
tal is governed by the hydrogen bonding ability of the
molecules, the molecular packing in crystals (effects
from molecular shape, size, and symmetry), and other
intermolecular interactions such as charge transfer and
dipole-dipole interactions in the solid phase. The cor-
relation of the melting points of some ionic liquids has
already received attention [25].

Refractive index

The QSPR models for refractive indices are much
more tractable than those for melting points. A five-
parameter correlation was developed for the refrac-
tive indices of 125 diverse liquid organic compounds
(R> = 0.945) [26]. The most important descriptor
is the HOMO-LUMO energy gap, the energy differ-
ence between the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital
(LUMO). Both the refractive index and the HOMO-
LUMO energy gap are related to the polarizability of
amolecule. A smal HOMO-LUMO energy difference
usually means that the molecule is relatively easy to
polarize.

Descriptors for polymeric molecules can not be
calculated using the same techniques as for small
molecules. However, for linear polymers above a cer-
tain chain length, it is possible to use the repeating unit
to calculate appropriate descriptors; this was done for
95 amorphous homopolymers[27] of known refractive
indices to afford a good correlation (R? = 0.940). The
majority of the polymers examined were homochain
polymers (only carbon atoms in the main chain) or
polyoxides, but several polyamidesand polycarbonates
were also included. The HOMO-LUMO energy gap is
again the most important descriptor.

Viscosity

Viscosity is decisivefor the transfer or movement of
bulk quantities of liquids e. g. in the petroleum indus-
tries and in chemical engineering in general. A five-
descriptor quantitative structure—property relationship
(QSPR) model developed by us[28] for the liquid vis-
cosity of 361 organic compounds containing C, H, N,
O, S and/or halogens had a good squared correlation
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coefficient (R?) of 0.854 and a standard error (s) of
0.22 log units.

Density of organic liquids

The normal density (i.e. the density at 1 atm and
208 °C) is a main physicochemical property for the
characterization and identification of a compound.
Densities are used to predict or estimate other physical
properties, such as critical pressure, viscosity, thermal
conductivity, diffusion coefficients, and surface ten-
sion.

Successful one to four parameter correlation equa-
tions were developed for the densities of various sub-
sets of organic compounds containing various het-
eroatoms[29], with standard errorsranging from 0.027
for hydrocarbonsto 0.085 g/cm? for halogenated com-
pounds. A general two-parameter correlation model
was also developed for the prediction of the density
of any organic compound containing C, H, O, N, S,
and/or halogen atoms. This correlation model covers
alarge diversity of organic structures with a standard
prediction error of 0.046 g/cm?3.

Dielectric constants

The static dielectric constant, also called the rela-
tive permittivity €, awell defined molecular bulk prop-
erty, is measured as the ratio of the capacitance of a
condenser with the material as didlectric to its capaci-
tance with vacuum as dielectric. Experimental data for
many organic and inorganic compounds are available.
We have developed multilinear regression and neural
network QSPR models for the satisfactory prediction
of both the dielectric constant (&) and the Kirkwood
function (e —1)/(2e + 1) of organic liquids [30]. The
QSPR models were developed from a training set of
155 diverse compoundsusing theoretical molecular de-
scriptors that encode the electronic properties of the
molecule and the intermolecular interactions between
molecules. The average prediction errors of the best
models are 27% for the dielectric constant and 4.1%
for the Kirkwood function.

Complex Physical Properties
GC retention indices

We correlated the retention times [31] of 152 struc-
tures incorporating a wide cross section of classes of
organic compounds in a six-descriptor equation with
R? = 0.955 and R?;, = 0.881.

A specific application of GC retention times
is the analysis of insect pheromones. Insects pro-
duce a great variety of methyl-branched alkanes as
pheromones [32], but the structural variation is usu-
ally quite limited; most have a straight-chain backbone
of 21-37 carbons, although it may extend to 51 car-
bons. Methyl branches appear at restricted locationson
these backbones. Many insects produce monomethyl
alkanes with the methyl branch located on carbon
2, 3,7, 9 11, 13, or 15. The next most commonly
found series consists of dimethyl alkanes, in which
the methyl branches are separated by a chain of 3, 7,
9, or 11 methylene (-CH»-) groups; in these dimethyl
derivatives the methyl branches are seldom separated
by an even-number of carbons. The same pattern ap-
pears for the trimethyl alkanes, where three methyl
branches separated by chains of three-CH »- groupsare
again the most common. In tetramethyl alkanes, those
with the four methyl branches each separated by three
-CH»- groups are the only types observed so far. The
principal method used for the identification of these
alkane-pheromones is gas chromatography (GC) and
GC-mass spectrometry (GC-MS) [32].

A general QSPR model (squared correlation coeffi-
cient of 0.9585 and a standard error of 5.8) including
mainly topological descriptors was obtained for 178
data points by our group for the GC retention indexes
of methylalkanes produced by insects [33]. The error
of the model was similar to the experimental error. The
model was supported by (i) leave-one-out cross vali-
dation and (ii) division into three sets and prediction
of each set from the other two. As a further test of
the utility of the model, retention indices were suc-
cessfully predicted for an external set of 30 methyl-
branched hydrocarbons not involved in the deduction
of the correction equation from the main data set. The
average error was 4.6 overall and 4.3 for the 165 com-
pounds remaining after leaving out small monomethyl
alkanes. Genera trends of the structural variation of
compoundsin any given range of retention index were
established by the analysis of the molecular descriptors
appearing in the best QSPR model [34]. Topological
descriptors were found to have high coding capabili-
ties for the GC retention index and were selected to
represent the chemical structures effectively.

Rat blood partition coefficient

The absorption, distribution and elimination (in ani-
mals and humans) of volatile organic compounds are
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important in pharmacokinetics. Partition coefficients
between air, water, blood and other liquids are impor-
tant to explain these phenomena.

The partition coefficient, PCx /g, for agiven organic
compound is defined as the ratio of concentrations
achieved at equilibrium between the two different me-
dia as expressed mathematically in eg. (1), where A
can be blood, saline, oil etc., and B is air.

B concentrationin media A
~ concentration in media B

@

QSPR treatment [35] of a data set of 100 diverse or-
ganic compounds related the logarithmic function of
rat blood: air, saline:air and olive ail : ar partition
coefficients (denoted by logK (b : a), logK(s: &), and
logK(o: a), respectively) to theoretical molecular and
fragment descriptors had resulted in models with R?
of 0.881, 0.926, and 0.922, respectively. The verifica
tion of the predictive power of these models on a test
set of 33 organic chemicalsnot included in the training
set gave satisfactory sgquared correlation coefficients:
0.791 for rat blood: air, 0.794 for saline: air and 0.846
for dliveoil : air.

PCa/B

Cyclodextrin complexation energies

Applications of computational chemistry (includ-
ing QSAR/QSPR) to the study of complexation with
cyclodextrins (CD) have been well reviewed by Lip-
kowitz [36]. Our QSAR investigation jointly with the
group of Varnek and Suzuki of the CD binding en-
ergies [37], used both multilinear CODESSA PRO
and TRIAL fragment approaches. CODESSA-PRO
modeled binding energies for 1: 1 complexation sys-
tems between 218 organic guest molecules and o-
cyclodextrin, with a seven-parameter equation with R?
of 0.796 and R?., of 0.779. Fragment-based TRAIL
calculations (involving 79 fragment parameters) gave
a better fit with R? of 0.943 and R?y, of 0.848 for 195
data points in the database. The study indicated that
charge-related and topological descriptors connected
to the branching of the molecules were the most im-
portant for the complexation binding energies.

Uranyl extractants

Again in collaboration with Professor Varnek, we
developed a computer-aided design of new phosphor-
yl-containing podands, which efficiently extract the
uranyl cation from water to an organic solvent [38].
This study was devoted to computer-aided design

of new extractants of the uranyl cation involving
three main steps. (i) a QSPR study, (ii) generation
and screening of a virtual combinatorial library, and
(iii) synthesis of several predicted compoundsand their
experimental extraction studies. First, QSPR modeling
was performed of the distribution coefficient (logD)
of structure of the cation extracted by phosphoryl-
containing podands from water to 1,2-dichloroethane.
Two different approaches were used for modeling pur-
poses: one based on classical structural and physico-
chemical descriptors (implemented in the CODESSA
PRO program) and another one based on fragment de-
scriptors (implemented in the TRAIL program). Three
statistically significant models obtained with TRAIL
involved as descriptors either sequences of atoms and
bonds or atoms with their close environment (aug-
mented atoms). The best models of CODESSA PRO
included its own molecular descriptors as well as frag-
ment descriptors obtained with TRAIL. At the second
step, a virtual combinatoria library of 2024 podands
was generated with the CombiLib program, followed
by the assessment of logD values using developed
QSPR models. At the third step, eight of these hypo-
thetical compoundswere synthesi zed and tested exper-
imentally. Comparison with experiment showed that
the QSPR models developed successfully predicted
logD valuesfor 7 out of 8 compounds[39].

Biphasic partitioning

Aqueous biphasic systems (ABS) are formed by
mixing two (or more) water-soluble polymers or
adding asalt to an aqueous sol ution of apolymer above
a certain critical concentrations or temperature. ABS
are noteworthy because each of their two nonmiscible
phases possesses different solvent properties although
each is over 80% water on amolal basis. Due to their
highly agueous and hence mild nature, which is con-
sonant with the maintenance of macromolecular struc-
ture, ABS have been employed for the separation of
biological macromoleculesfor over 40 years[40].

ABS media are nonvolatile, nontoxic, and non-
flammable and have recently found applications in
many fields of science and technology, representing
unique alternatives to traditional solvent based bipha-
sic systemsfor the separation of metal ion species[41],
small organic molecules [42], and lignins from cellu-
lose in the paper and pul ping process [43].

We have investigated [44] the partitioning of 29
small organic probes in a PEG-2000/(NH 4)2SO4
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Fig. 3. Correlation of critical micelle concentration of non-
ionic surfactants. Descriptors: 1) Kier and Hall index (0);
2) Average Information Content; 3) Relative number of N
and D atoms. Comments: * The two fragments topologically
express the bulk and branchiness of the tail. * The relative
number of nitrogen and oxygen atoms represents the size of
the hydrophilic fragment.

biphasic system by QSPR. A three-descriptor equa-
tion R? of 0.97 for the partition coefficient (logD) was
obtained. Using the same descriptors derived solely
from the chemical structure of the compounds, a three
parameter model was also obtained for logP (oc-
tanol/water, R? = 0.89); predicted logP values were
used as an external descriptor for modeling logD.

Critical micelle concentrations

A hydrophobic tail and a hydrophilic head charac-
terize surfactants. We have studied critical micelle con-
centrations of 77 non-ionic surfactants with a diver-
sity of tails including straight chain, branched chain,
aromatic and fluorinated [45]. The heads included
polyethylene oxide, glycols, sugars and others to find
agood correlation with just three descriptors (Fig. 3).
The three empirically found fragment descriptors are
physically very meaningful. The two fragment descrip-
torsfor the molecular tail are both topological, describ-
ing its length and branching. The third descriptor re-
|ates to the size of the hydrophilic head. A similar re-
sult was obtained with anionic surfactants[46].

GC response factors

We have correlated response factors for a gas flame
ionization detector [31] as shown in Fig. 4. Here, we
have introduced as descriptors the concept of “effec-
tive carbon atoms”, from flame ioni zation detector the-
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Fig. 4. Calculated vs. experimental values of response fac-
tors. Statistical characteristics: n = 152, R2 = 0.892, R3¢, =
0.881, s= 0.054. Descriptors: 1. relative weight of atoms;
2. total molecular center electron repulsion; 3. relative num-
ber of atom; 4. minimum total bond order of C atom; 5. min-
imum valency of a H; 6. total hybridization component
molecular.

ory. This has shown [31] that certain carbon atomsin
a structure are more effective in producing pyrolysis
products that conduct electricity better than others.

UV spectral intensities

In high throughput screening split-pool libraries,
sub nanomole amounts of compound are synthe-
sized, their structures are confirmed by LC/MS, and
the LC/UV signal used to assess purity. It is dif-
ficult to assess these parameters quantitatively as
weighing, NMR, ELSD (Evaporative Light Scat-
tering Detector), CLND (Combustion-based Chemi-
luminiscent Nitrogen Detector) have insufficient
sensitivity.

We have attempted [47] to predict response in typ-
ical HPLC UV detectors directly from structure. For
a diverse set of 460 compounds, use of the sum of
ZINDO [48] oscillator strengths in the integration
range as an additional descriptor, produced a robust
five-descriptor model with R? = 0.857.

Solubility

The phenomenon of solubility is of both funda-
mental importance and high practical interest. For 406
structurally diverse organic compounds we modeled
environmentally important air; water partition coeffi-
cients, [49] (see Fig. 5) to obtain afive-descriptor equa-
tion with R? = 0.939 and R?;, = 0.936. The data set
includes saturated and unsaturated hydrocarbons, hal o-
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Descriptor name R R2oy
HDCAQ) 0522 0518
nO + 2nN 0.684 0.68
Enomo — ELumo 0.879 0.876
PCWTE 0.916 0.913
Nrings 0.941 0.936

genated compounds, and compounds containing hy-
droxyl, cyano, amino, nitro, thio, ester, ether, carbonyl,
and carboxy! functional groups plus furan, pyran, pyr-
idine, and pyrazinerings.

Analogous work has been carried out for other sys-
tems, for example, the solubility of gases and vaporsin
ethanol [50].

More recently, we have been involved in a general
treatment of solubility. A carefully chosen overall data
set included 154 solvents and 397 solutes. In the re-
sults [51-53], the number of solutes used for each
solvent varied from 226 for hexadecane to 2 for sev-
eral solvents. We have reported our results [51] on the
modeling of 69 of these solvents, which ranged from
14 to 226 solutes, with the average number of solutes
per solvent being 48. The remaining 72 solvents have
less than 14 available experimental points. We also an-
alyzed and reported the modeling of 80 selected solutes
[52] by choosing only those that had reliable solubility
datafor at least 15 solvents. The correlations were ex-
amined by holding the solute constant and varying the
solvent and vice versa. Good quality statistical corre-
|ations were obtained which should ultimately enable
us to construct a large matrix and fill in the missing

points (work in progress). A principal component anal-
ysis should give considerable insight into the whole
phenomenon of solubility, is being carried out.

Soil sorption coefficients

The soil sorption potential of chemicalsisanimpor-
tant parameter in environmental risk assessment proce-
duresto estimate the persistence and mobility of chem-
icals. This refers to assessments of the bioavailability
of chemicalsfor both soil- and water-living organisms.
Soil sorption is most often expressed as a coefficient
defined as the concentration of the chemical in soil di-
vided by the concentration in the agueous phase.

Diverse chemical descriptors were explored for use
in QSPR models aimed to screen the soil sorption po-
tential of 351 organic compounds [54]. These com-
poundsweredividedinto 11 groups. Five general mod-
els were developed with R? ranging from 0.34—0.99.
Another recent investigation [55] of the soil sorption
by usresultedin genera and class-specific QSPR mod-
els for the soil sorption, logKoc, of 344 organic pol-
lutants (0 < logKoc < 4.94) using a large variety of
theoretical molecular descriptors based only on molec-
ular structure. Two general models were obtained. The
first, two-parameter model was derived for a struc-
turally representative set of 68 chemicals had (R? =
0.76 and s= 0.44). The second, four-parameter model
was based on data for 344 compounds (R = 0.76,
s=0.41). Thefirst model was validated using the data
for the remaining 276 pollutants (R? = 0.70, s= 0.45).
An additional validation of both modelswas performed
using an independent set of 48 pollutants. Both mod-
els predict the logKoc at the level of experimental
precision, while the theoretical molecular descriptors
appearing in the QSPR models give further insight
into the mechanisms of soil sorption. The analysis of
the distribution of the residuals of the logKoc values
calculated by both general models indicated the need
and possible advantages of modeling soil sorption for
smaller data sets related to individual classes of chem-
icals.

Chemical Properties
Lithium-cation basicities

The reactivity of metal ions toward ligands is
usualy quite straightforward: in general, they form
adducts or clusters, which can be considered as ions
“solvated” by one or several ligands. The basicity of
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ligandsis very important for this process of cluster for-
mation. We investigated gas-phase lithium-cation ba-
sicity for 205 diverse compounds [56] to obtain a six-
parameter general QSPR model with good statistical
characteristics; R? = 0.80, R%y, = 0.79, s> = 8.78. In
addition, the theoretical descriptors, such as minimum
net atomic charge, highest occupied molecular orbital
energy, total point-charge component of the molecular
dipole, etc., logically explain the reaction equilibrium
and electrostatic interaction between the lithium cation
and a base.

Decarboxylation rates

Resaction rates depend greatly on the nature of the
solvents employed. We have used QSPR to investi-
gatethe decarboxylation rates of 6-nitrobenzisoxazol e-
3-carboxylic acid [57] in 24 solvents. The results of
multilinear correlation with theoretical molecular de-
scriptors demonstrated that CODESSA can produce a
good QSPR model even for a relatively small number
of data points.

Chain transfer constants

Kinetic chain-transfer constants play an important
role in polymer chemistry since an understanding of
chain transfer clarifies the microkinetic processes in
polymerization reactions. QSPR treatments of the re-
spective reaction parameters may have great potential
from both practical and theoretical standpoints [58].
The Quantitative Structure-Reactivity Relationships
(QSRR) developed by us for kinetic chain-transfer
constants for 90 agents in styrene polymerization at
60 °C produced three- and five-parameter correlations
with R? of 0.725 and 0.818, respectively. The descrip-
tors involved in the correlations were consistent with
the proposed mechanism of the chain-transfer reac-
tions. In other words, the descriptorsin the models ex-
plained the mechanism of reaction at different stages.
Descriptors such as LUMO, HDCA-1, and Kier and
Hall topological indices are important in this QSRR
model.

Flash points

The flash point, the temperature at which the mix-
ture of avapor and air spontaneously ignites, is of ob-
vious importance in many connections. We have de-
rived QSPRs for flash points [59] using the available
experimental data for 271 various organic compounds
(R? = 0.924). Flash points correlate well with boil-
ing points, the first parameter involved in the model

isthe boiling point predicted by our previously derived
equation [60]. This enables the model to be used to
predict flash points of compounds for which no mea-
sured boiling point is available. The other two param-
etersinvolved in the regression equation devel oped for
271 diverse organic compounds were the relative neg-
ative charge and the hydrogen acceptor surface areain
the molecule.

Gas—phase homolysis

Simple bond fission eg. (2) is one of the simplest
elementary chemical reactions that plays an important
role in solving fundamental kinetic problemsin chem-
istry.

RiRj — Ri* + Rj* @)

Knowledge of the kinetic parameters of reactions of
type (3) aso provides benefits for the design of in-
dustrially and environmentally important processes. In
particular, the modeling of the pyrolysis and combus-
tion processes requires the knowledge of reliable val-
ues of kinetic parameters of many elementary gas-
phase homolytic reactions. A successful 5-parameter
QSPR model was derived by us for the rate constants
of the gas phase pyrolysis of C-X chemical bonds[61].

An extension of this work improved the chemi-
cal picture behind the homolysis phenomenon [62].
The kinetic parameters of the gas-phase homolysis
for 58 different C-CH3 bonds were treated using
the CODESSA program. The resulting six-parameter
modelswere devel oped for prediction of logk (1047 K)
and the parameters of the Arrhenius equation, logA
and E.

Rotational activation energies for amides

A novel approach to predict the gas-phase rotational
activation energies of amides was presented by our
group using the CODESSA program [63] for a QSPR
treatment gave a three-parameter equation with R2 =
0.982 for the free energies of activation for the amide
bond rotation for a set of 24 N, N-dialkylamides. The
descriptors that appeared in this model were explained
from the chemical point of view by taking into account
the nature of the compounds.

Biological properties
Toxicity of aqueous pollutants

Quantitative structure-toxicity relationships were
developed by our group for the prediction of aque-



A.R. Katritzky et al. - The Potential of QSPR

381

ous toxicities for Poecilia reticulata (guppy) using the
CODESSA treatment [64]. Experimental LCsy (and
logP) values from the literature for 293 compounds
were divided into four groups (according to the func-
tional group), for each of which a QSAR model was
obtained. A two-parameter correlation with R? = 0.96
was found for class 1 toxins. The five-parameter corre-
lations were derived with R? = 0.92 for class 2 toxins
and with R? = 0.85 for class 3 toxins, respectively. The
correlations for class 4 toxins had R? = 0.85. Again,
all the descriptors utilized were calculated solely from
the structure of the molecules, which made it possible
to predict the LCsg values for unavailable or unknown
toxins. Our results [64] were generally consistent with
the results obtained by others[65].

Nitrobenzene toxicities

Nitroaromatics are hazardous chemical sthat display
several manifestations of toxicity, including skin sensi-
tization, immunotoxicity, germ cell degeneration, inhi-
bition of liver enzymes and also a conjectured carcino-
genicity.

We have developed a five-parameter QSAR cor-
relation [R> = 0.723, R’y = 0.676, in terms of
log(IGCsp) 1] based on CODESSA-PRO methodol-
ogy for the aquatic toxicity of 97 substituted nitroben-
zenes to the ciliate Tetrahymena pyriformis. The re-
sults support previous conclusions that hydrophobicity
and electrophilic reactivity control nitrobenzene tox-
icity [66]. Correction of the data for the ionization of
acidic species (picric and nitrobenzoic acids) improved
the results to R?2 = 0.813, R%,, = 0.787. Considera-
tion of the results for atotal set of 97 compounds sug-
gested two mechanisms of toxic action. A subset con-
taining 43 compounds favorably disposed to reversible
reduction of nitro group with respect to the single oc-
cupied molecular orbital energy, ESOMO correlated
well with just four theoretically derived descriptors:
R? = 0.915, R, = 0.890. Another set of 49 substances
predisposed to aromatic nucl eophilic substitution mod-
eled well (R? = 0.915, R3, = 0.888) with five descrip-
tors.

Oxazolidinone antibacterials

The increase during the last decade of bacte-
rial resistance to antibiotics poses a serious concern
for medicine. Oxazolidinones, a new class of syn-
thetic antibacterials with activity against gram-positive
pathogenic and anaerobic bacteria, bind selectively to

the 50S ribosomal subunit and inhibit bacterial transla-
tion at the initiation phase of protein synthesis.

Few QSAR/QSPR investigations have been pub-
lished in this areaof biochemistry. We have established
that the minimum inhibitory concentrations (MIC) re-
quired to inhibit the growth of S aureusfor 60 3-aryl-
oxazolidin-2-one antibacterials [67], successfully cor-
relate with theoretical molecular and fragment descrip-
tors. The use of CODESSA PRO [20] descriptorsled to
a significant seven-parameter model with R = 0.820
and Ry, = 0.758. Our results demonstrate that in char-
acterizing a complex biological property (as antibac-
terial activity) by multilinear QSPR equation, the de-
scriptorsrelated to the whole molecul e can provide su-
perior model versus that obtained using just fragmen-
tal descriptors. However, the best model utilized both
fragmental and molecular descriptors.

PDGF receptor activities

Insights into the biology of tumor angiogenesis
have led to the identification of various molecules
that promote tumor development. Of particular inter-
est are such factors as the platel et-derived growth fac-
tor (PDGF), which plays a major role as a regulator
of cell growth. We have investigated the QSAR mod-
els describing the activity of 1-phenylbenzimidazoles
as promising selective inhibitors of PDGF [68]. Two
approaches were applied to 123 reported activity of
log (ICsp)~? for the 1-phenylbenzimidazoles; (i) lin-
ear (multilinear regression) and (ii) nonlinear (artificial
neural network). The results obtained in this work in-
dicate that the regression and ANN models exhibit sig-
nificant prediction capabilities. The linear model was
developed mainly for the purpose of structure-activity
interpretation, whereas the ANN model was primarily
developed for predictive ability and classification.

Human milk to plasma concentration ratios

The milk to plasma concentration ratio (M/P ra
tio) of a drug estimates an infant’s exposure to drugs
through breast milk. The M/P ratio is an attempt to
quantify the equilibrium concentration between breast
milk and blood. It is defined as the ratio of the drug
concentration in the breast milk (Cgpy) and its concen-
tration in the maternal plasma (Cup) €g. (3).

M/P = Cgwm /Cwup. ©)

Recently, a satisfactory model has been developed
using CODESSA PRO for the correlation and predic-
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tion of M/P ratios for diverse pharmaceuticals [69].
The experimentally derived M/P ratio values for 100,
widely used pharmaceuticals gave a seven-parameter
QSAR model with R2 = 0.791.

Activity of receptor antagonists

For rationalization of biological responses (bind-
ing affinity, selectivity, and efficacy) of ligands for G-
protein coupled receptors, the large molecular diversity
of the receptors and their subtypes, is crucial.

In our study [70], theoretical descriptors derived
by means of the program CODESSA and ad hoc de-
fined size and shape descriptors have been employed
for deciphering, quantitatively the molecular features
responsible for affinity and selectivity in a series of
potent N4-substituted arylpiperazines antagonists act-
ing at postsynaptic 5-HT1A receptor. We obtained 10
QSAR models or the binding affinity with correlation
coefficients between 0.70 and 0.83. The theoretical de-
scriptorsinvolved in the selected QSAR models can be
classified as: (a) ad hoc size and shape descriptors de-
fined with respect to a super-molecule of high &ffinity
ligands, and (b) descriptors derived on a single struc-
ture, i.e. molecular orbital indexes and charged par-
tial surface area descriptors. The QSAR models were
also developed for the wide series of structurally di-
verse o -adrenergic receptor antagonists[71].

Genotoxicities

The carcinogenicity and mutagenicity of small or-
ganic molecules are important chronic toxicity mani-
festations. They are closely related: some 90% of car-
cinogenic compounds are known or potential muta-
gens. While the experimental assessment of carcino-
genicity is complex and time consuming, several tests
allow easy detection of mutagenicity. A quantitative
structure-activity relationship with R? = 0.834, was
derived by our group for a set of 95 heteroaromatic
and aromatic amines to correlate and predict their mu-
tagenic activity [72]. It consists of six descriptors cal-
culated from the molecular structures with quantum
chemical methods. The descriptors in the model re-
veal the importance in mutagenic interactions of het-
eroaromatic amines of hydrogen bonding, of effects
induced by the solvent, and of the size of compound.
Themodel also suggeststhat the amino groupiscritical
for thereactive site. Later the investigation was contin-
ued applying the nonlinear approaches of Chebyshev
polynomial expansion and neural networks [73]. The

dependence of molecular descriptors in these models
on environmental effects and molecular conformations
were analyzed and models were found superior to the
linear QSAR treatment.

Technological Properties
Rubber vulcanization rates

Many heterocyclic disulfides, sulfenamides, or sulf-
enimides are accelerators used for the vulcanization
of rubber [74]. In the vulcanization process, there
should be a delay before the onset of cross-linking; af -
ter this delay the vul canization should proceed rapidly
and irreversibly. Compounds are tested as accelerators
for this process by constructing a “rubber rheometer
curve’ [74] in a machine that measures the change in
the torque (“stiffness’ of the rubber undergoing vul-
canization). It isalso important that the torque does not
immediately increase but for a certain period changeis
delayed enough to formulate the tire or other article but
then proceeds rapidly and irreversibly to a maximum
hardness. We have carried out the QSPR treatment for
23 compounds that have been measured for their po-
tential as accelerators. Together with colleagues at the
Flexsys Company [74], we investigated the possibility
of using CODESSA to correlate the structure of accel-
eratorswith (i) thetimeto scorch, ts2, and (ii) the max-
imum rate of vulcanization, mxr. Modeling was done
on both the parent molecular accelerator (12 sulfe-
namides, 11 sulfenimides) and also on a zinc complex
of the accel erator with thiolate fragments. The correla
tion coefficients of the QSPR models range from 0.925
t0 0.967 and show that the devel oped equations are sta-
tistically satisfactory and useful.

Concluding Remarks

Quantitative structure-activity/property relationship
(QSAR/QSPR) techniques have become indispensable
in all aspects of research into the molecular interpreta-
tion of physical, chemical, biological and technolog-
ical properties. Today it would be inconceivable for
any commercial, governmental, or academic group to
research in these fields without the help of sophis-
ticated calculations. The results reviewed in this pa
per witness the applicability and power of the QSAR
and QSPR approaches for the prediction of very di-
verse propertiesof chemical compoundsand materials.
This has become possible due to substantial progress
in the development of new, more adeguate molecular
descriptors and methods of derivation of multiple lin-
ear and nonlinear relationships. The QSPRs (QSARS)
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are empirical equations for formal interpolation or ex-
trapolation of missing data; in many cases they also
give insight into the physical interactions and pro-
cesses determining the properties of substances. More-
over, the ability to use exclusively theoretical molecu-
lar descriptors has provided the means to predict the
properties for molecular structures that are difficult

to measure experimentally or even for those not yet
synthesized.
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