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The neonicotinoids are the most successful chemical class of insecticides reaching sales of more
than $1 billion in 2003, mainly due to the excellent market performance of imidacloprid and thiameth-
oxam. This paper describes the discovery, the synthesis and the insecticidal activity of thiamethoxam
and related compounds and reports the hydrolytic stability and the degradation pathways of thiameth-
oxam together with the synthesis of the degradation products.
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Introduction

An important milestone in the history of modern
insect control is marked by the discovery of the neo-
nicotinoid insecticides [1]. As the first representative
of this chemical class, imidacloprid 1 was introduced
to the market in 1991, and since then, a series of
analogues (compounds 2 – 7) have been launched (Ta-
ble 1). The neonicotinoids are the fastest growing
chemical class of insecticides, now exceeding 15%
of the total insecticide market. This tremendous suc-
cess is based on their unique chemical and biological
properties, such as broad-spectrum insecticidal activ-
ity, low application rates, excellent systemic character-
istics, favourable safety profile, and a new mode of ac-
tion.

Neonicotinoids bind selectively to insect nicotinic
acetylcholine receptors (nAChRs) with nanomolar
affinity to act as potent insecticides. However, they do
not act as a homogenous class of insecticides. Recent
findings suggest that thiamethoxam binds, compared
to the other neonicotinoid sales products, in a differ-
ent way, possibly to a different site of the receptor in
aphids [3].

Our own research in this area resulted in the dis-
covery of thiamethoxam (4) [4]. This compound is
a second-generation neonicotinoid and belongs to the
thianicotinyl subclass. It was first synthesized in 1991
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Table 1. Neonicotinoid sales products [2].

Common Name Company Year of Market Sales 2003
Introduction Mio $a

Imidacloprid (1) Bayer 1991 665
Nitenpyram (2) Takeda 1995 45
Acetamiprid (3) Nippon Soda 1996 60
Thiamethoxam (4) Syngenta 1998 215/298b

Thiacloprid (5) Bayer 2000 < 30
Clothianidin (6) Takeda, Bayer 2002 < 30
Dinotefuran (7) Mitsui Chemicals 2002 < 30
a Data from Phillips McDougall; b sales 2004, data from Syngenta
Annual Report 2004.

1 2 3

4 5 6

7

and is now developed worldwide for use in more than
100 crops. Thiamethoxam is marketed since 1998 un-
der the trademarks Actara R© for foliar and soil treat-
ment and Cruiser R© for seed treatment. In all these
usages, thiamethoxam provides excellent control of
a broad range of commercially important pests, such
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Scheme 1. Optimization of the lead structure 9.

as aphids, whiteflies, thrips, rice hoppers, Colorado
potato beetle, flea beetles, wireworms, leaf miners as
well as some lepidopterous species [5]. Low use rates,
flexible application methods, excellent efficacy, and
the favourable safety profile make this new insecti-
cide well suited for modern integrated pest manage-
ment programs in many cropping systems.

Discovery of Thiamethoxam

As part of our program on neonicotinoid chem-
istry we have investigated novel variations of the
nitroimino-heterocycle of imidacloprid, which resulted
in the synthesis of compounds 8, 9, and 10 [4a].

Bioassays revealed that among these compounds,
the 4-nitroimino-1,3,5-oxadiazinane 9 exhibits clearly
better insecticidal activity than the 2-nitroimino-hexa-

Table 2. Insecticidal activity of compounds 8 – 10 in compar-
ison to imidacloprid 1 and its six-ring analogue 11.

Compound Structure LC80 [mg AI liter−1]
Type Aphis Myzus Diabrotica

craccivora persicae balteata
m. p. m. p. L2
Pea, Pea, Filter paper,

foliar spray into water spray
8 Triazinane > 200 3 200
9 Oxadiazinane 50 0.05 3

10 Thiadiazinane 200 0.8 12
11 Hexahydro- 12 0.2 3

pyrimidine
1 12 0.05 0.8
4 Oxadiazinane 12 0.05 – 0.2 0.8

hydro-1,3,5-triazine 8 and the 4-nitroimino-1,3,5-thia-
diazinane 10 and that its potency is close to imidaclopr-
id and its six-ring analogue 11, respectively (Table 2).

Chemical and biological exploration of the lead
structure 9 showed that replacement of the 6-chloro-
3-pyridyl group by a 2-chloro-5-thiazolyl moiety
(→ compound 12) resulted in a strong increase of the
activity against chewing insects, whereas the introduc-
tion of a methyl group as pharmacophore substituent
(→ compound 13) increased the activity against suck-
ing pests (Scheme 1). The combination of these two
favourable modifications led to thiamethoxam (4). This
compound was clearly the most active 4-nitroimino-
1,3,5-oxadiazinane, and its performance in our green-
house screening was comparable or better than that of
the standard imidacloprid 1 [4a].
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Method Reaction conditions Yield
A 5 eq. HCHO, pH = 9, 90 ◦C traces
B 4 eq. (CH2O)n, 1 eq. Et3N, toluene/1,4-dioxane 1:1, 110 ◦C 21%
C 3 eq. (CH2O)n, cat. HCl , toluene / 1,4-dioxane 1:1, 110 ◦C 21%
D 2 eq. (CH2O)n, CF3COOH, ClCH2CH2Cl, r. t. 0% (dec.)
E HCHO, 1.1 eq. p-TsOH, 90 ◦C 47%
F HCHO, 1.1 eq. CF3COOH, 90 ◦C 61%
G HCHO / CH3COOH 1:1, 90 ◦C 28%
H HCHO / HCOOH 1:1, 90 ◦C 71 – 90%

Table 3. Mannich type cycliza-
tion of N-methyl nitroguani-
dine to 4-nitroimino-1,3,5-oxa-
diazinane 17b.

Scheme 2. Synthesis of monosubstituted-4-nitroimino-1,3,5-oxadiazinanes 17.

Scheme 3. Synthesis of thiamethoxam (4) and
other disubstituted 4-nitroimino-1,3,5-oxadiazin-
anes 19.

Synthesis of Thiamethoxam

At the start of our research, no practical syn-
thetic route for the preparation of 4-nitroimino-1,3,5-
oxadiazinanes was known. After much experimenta-
tion, we discovered a broadly applicable method for
the synthesis of monosubstituted 4-nitroimino-1,3,5-
oxadiazinanes 17 (Scheme 2). Thus, treatment of S-
methyl-N-nitro-isothiourea (14) with amines 15 in eth-

anol at 50 ◦C or 80 ◦C afforded N-monosubstituted-N’-
nitroguanidines 16. Heating of compounds 16 in a 1:1
mixture of formaldehyde and formic acid for several
hours at 80 – 90 ◦C provided the 4-nitroimino-1,3,5-
oxadiazinanes 17 in good to excellent yields. Key step
in this synthesis is the Mannich type cyclisation reac-
tion. Many different reaction conditions were investi-
gated; some examples are shown in Table 3. Among
the many acids tested only formic acid gave good re-
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Scheme 4. Pharmacophore modifications – synthesis of compounds 23 – 25.

sults. Other acids such as acetic acid, trifluoroacetic
acid and HCl strongly decreased the yields.

Compounds 17 could be coupled with heterocyclyl-
methyl halides 18 to afford the disubstituted 4-nitro-
imino-1,3,5-oxadiazinanes 19 (Scheme 3). Optimal
yields for these alkylation reactions were obtained
using 2.5 equivalents of potassium carbonate as a
base and dimethylformamide as solvent. Following the
methodologies described above, thiamethoxam (4) has
been synthesised in three steps from S-methyl-N-nitro-
isothiourea (14) in an overall-yield of 62%.

Variation of the Pharmacophore

Several variations of the pharmacophore (N-
C(N)=N-NO2) have been carried out. The cyanoimino
derivative 23 was prepared starting from N-methyl-N’-
cyanoguanidine 21, which was obtained in 56% from
sodium dicyanamide and methylamine (Scheme 4).
The conversion of 21 to 3-methyl-4-cyanoimino-1,3,5-
oxadiazinane (22) was not achieved under the re-
action conditions applied for the preparation of the
4-nitroimino-1,3,5-oxadiazinanes 17. However, treat-
ment of 21 with a large excess of aqueous formalde-
hyde at pH 8 gave compound 22 in moderate yield.
Alkylation of 22 with the chloride 20 afforded the
cyanoimino-analogue 23.

The urea 24 and the thiourea 25 were prepared start-
ing from thiamethoxam 4. Treatment of 4 with potas-

sium hydroxide in tert-butanol provided the urea 24,
which was reacted with Lawesson’s reagent to yield
the thiourea 25 in only 13% yield. Replacement of
Lawesson’s reagent by phosphorus pentasulfide re-
sulted in much better yields (57%) in the sulfuration
reaction.

The biological evaluation of these compounds re-
vealed that the potency is highly dependent on the
pharmacophore. Replacement of the nitroimino group
by a cyanoimino moiety (compound 23) clearly di-
minished the activity, while compounds like the urea
24 (X = O) and the thiourea 25 (X = S) were not
active at the highest concentration tested (100 ppm).
These differences in the biological activities seem to be
clearly related to the electronic properties of the phar-
macophore moiety. Activity is only found if the func-
tional group at C-4 is strongly electron-withdrawing
and has a hydrogen accepting head like in N-NO2 and
in N-CN.

Variation of the Pharmacophore Substituent

A wide range of modifications of the pharma-
cophore substituent has been carried out as shown in
Scheme 5. The key intermediate 12 was prepared by
Mannich type cyclisation of nitroguanidine (26) fol-
lowed by selective monoalkylation with the chloride
20. Under optimized reaction conditions (1.2 eq. 20,
1.0 eq. KOC(CH3)3, DMF-pyridine 4:1, −5 ◦C to r. t.)
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Scheme 5. Variation of the pharmacophore substituent: synthesis of compounds 27 – 32.

and a special work-up procedure (crude dissolved in
CH2Cl2, extracted with 2N NaOH, after acidification
of the aqueous phase with HCl to pH = 4, the prod-
uct separates as pale brown solid), compound 12 was
obtained in 60% yield from 17a.

Compounds of type 27–30 and 32 showed moder-
ate to good insecticidal activity, whereas the oxalic
acid derivative 31 was found to be inactive. How-
ever, none of these new compounds exhibited the po-
tency and the broad-spectrum insecticidal activity of
thiamethoxam 4. Best activity was observed for com-
pounds with the pharmacophore substituent being H,
Et, allyl, propargyloxymethyland ethylcarbonyl. Steric
as well as electronic factors seem to have an important
influence on the biological activity. When the phar-
macophore substituent is an alkyl group, the activity
decreases with the chain length and the steric bulk
(Me >Et>n-Pr � i-Pr, n-Bu). Somewhat surprisingly,
the methyl-substituted compound 4 is clearly more ac-
tive than the unsubstituted compound 12. This is in
contrast to the imidacloprid series where the activity

Table 4. Kinetic data of the hydrolytic degradation of thi-
amethoxam (4).

pH T Rate constant Half-life Estimated half-life at 25◦C
[◦C] [h−1] [h] [days]

5 70 2.55×10−4 2718 6990
7 70 1.18×10−2 59 152
9 25 4.72×10−3 147 6.1

drops significantly when a methyl group is introduced
as pharmocophore substituent.

Hydrolytic Degradation of Thiamethoxam

The hydrolytic degradation of thiamethoxam 4 was
investigated in the pH range from 5 to 9 and was found
to follow pseudo-first order kinetics (Table 4) [6].

Two major degradation pathways were observed in
the pH range from 5 to 9. The first pathway led to the
corresponding 1,3,5-oxadiazinan-4-one 24 and the sec-
ond pathway to the ring opened N-nitro-urea 33 and
to the 2-chloro-5-aminomethyl-thiazole (34), respec-
tively (Scheme 6).
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Scheme 6. Hydrolytic degradation pathways of thiamethoxam (4).

Scheme 7. Cleavage of thiamethoxam (4) under acidic and basic conditions.
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The product distribution was also pH-dependent.
The formation of the N-nitro-urea 33 at higher concen-
trations was only observed at pH 9. This intermediate
was not observed (or only at very low concentrations)
at pH 5 and pH 7 due to the further rapid hydrolytic
degradation to the corresponding amine 34. The cleav-
age of the 1,3,5-oxadiazinane ring to the correspond-

ing acyclic nitroguanidine 6 (clothianidin) was not ob-
served (for synthesis of clothianidin see lit. [7]). Under
more drastic conditions very similar results were ob-
tained as shown in Scheme 6. Our studies have shown
that thiamathoxam (4) is only converted to clothiani-
din (6) under very drastic conditions such as heating to
80 ◦C for several hours in conc. HCl.
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