Superhard Superconductor Composites Obtained by Sintering of Diamond, c-BN and C_{60} Powders with Superconductors Gennadi A. Dubitsky^a, Vladimir D. Blank^a, Sergei G. Buga^a, Elena E. Semenova^a, Nadejda R. Serebryanaya^a, Vladimir V. Aksenenkov^a, Vyatcheslav M. Prokhorov^a, Vladimir A. Kul'bachinski^b, Aleksei V. Krechetov^b, and Vladimir G. Kytin^b ^a Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya St., 142190 Troitsk, Moscow Region, Russia ^b Moscow State University, Leninskie gory, GSP-2, 119992, Moscow, Russia Reprint requests to Prof. Dr. S. G. Buga. E-mail: buga@ntcstm.troitsk.ru Z. Naturforsch. **61b**, 1541 – 1546 (2006); received July 3, 2006 Superhard superconducting samples with a critical temperature of $T_{\rm C} = 10.5 - 12.6$ K were obtained by high-pressure / high-temperature sintering of synthetic diamond powders coated with a niobium film and in 50% –50% composition with superhard C_{60} fullerene. Superhard superconductors with $T_{\rm C} = 9.3$ K were obtained when diamond and molybdenum powders were sintered at a pressure of 7.7 GPa and a temperature of 2173 K. Superconducting samples with $T_{\rm C} = 36.1 - 37.5$ K have been obtained in the systems diamond-MgB₂ and cubic boron nitride-MgB₂. Key words: Diamond, MgB₂, C₆₀, Superconductivity, High-pressure / High-temperature