High Oxygen Pressures and the Stabilization of the Highest Oxidation States of Transition Metals – Mössbauer Spectroscopic Characterization of the Induced Electronic Phenomena

Gérard Demazeaua, Alexey Baranova,b, Igor Presniakovb, and Alexey Sobolevb

a University Bordeaux 1 “Sciences and Technologies”, Centre de Ressources Hautes Pressions ICMCB-ENSCPB, 87 Avenue du Dr A. Schweitzer, 33608 Pessac Cedex, France
b Department of Chemistry, Lomonosov Moscow State University, 119992 Leninskie Gory, Moscow-V-234, Russia

Reprint requests to Prof. G. Demazeau. E-mail: demazeau@icmcb-bordeaux.cnrs.fr

Z. Naturforsch. 61b, 1527 – 1540 (2006); received July 3, 2006

High oxygen pressures are a fruitful tool for the stabilization of the highest formal oxidation states of transition metals (M^{n+}) leading to the strongest chemical bonds; the improvement of the M^{n+}–O bond covalency induces different electronic phenomena. Among the physical characterizations applied to investigate such phenomena, 57Fe and 119Sn Mössbauer spectra are evaluated for studying unusual electronic configurations, orbital ordering, charge disproportionation and insulator-metal transitions in the perovskites series of 57Fe doped RENiO_3 nickelates ($\text{RE} = \text{rare earths, Y and Tl}$) and 119Sn doped AEFeO_3 ferrates ($\text{AE} = \text{Ca, Sr}$).

\textit{Key words:} Oxygen Pressure, High Oxidation States, Mössbauer Spectroscopy, Electronic Configuration, Orbital Ordering, Charge Disproportionation, Insulator to Metal Transition