Moderate-pressure Synthesis and Neutron Diffraction Study of New Metastable Oxides

Jose Antonio Alonso^a, Javier Sánchez-Benítez^b, Horacio Falcón^a, Maria Jesus Martínez-Lope^a, and Angel Muñoz^c

- ^a Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain
- b Centre for Science at Extreme Conditions and School of Engineering and Electronics, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK
- C Dpto. de Física Aplicada, EPS, Universidad Carlos III, Avda. Universidad 30, E-28911, Leganés-Madrid, Spain

Reprint requests to Prof. Dr. J. A. Alonso. E-mail: ja.alonso@icmm.csic.es

Z. Naturforsch. **61b**, 1507 – 1514 (2006); received July 6, 2006

We have synthesized two new series of metastable oxides, namely $RE \operatorname{Mn_2O_5}$ and $RE \operatorname{Cu_3Mn_4O_{12}}$ ($RE = \operatorname{rare}$ earths) under moderate pressure conditions. A novel series of ferrimagnetic oxides has been obtained by replacing $\operatorname{Mn^{3+}}$ by $\operatorname{Fe^{3+}}$ in the parent $RE \operatorname{Mn_2O_5}$ compounds ($RE = \operatorname{Y}$, Dy, Ho, Er, Tm, Yb). The crystal structure has been studied by neutron powder diffraction (NPD); it contains chains of edge-linked $\operatorname{Mn^{4+}O_6}$ octahedra connected via dimeric groups of $\operatorname{Fe^{3+}O_5}$ square pyramids. The magnetic susceptibility and the thermal evolution of the NPD patterns reveal the onset of a ferrimagnetic structure below $T_{\rm C}\approx 165$ K, characterized by the propagation vector k=0. Immediately below $T_{\rm C}$, the $\operatorname{Fe^{3+}}$ and $\operatorname{Mn^{4+}}$ moments lie in an antiparallel arrangement along the c-axis direction. At lower temperatures, the magnetic moment of the rare-earth cations also participates in the magnetic structure, adopting a parallel arrangement with the $\operatorname{Fe^{3+}}$ spins.

Some new derivatives of $CaCu_3Mn_4O_{12}$ have been prepared at moderate pressures of 2 GPa by replacing Ca^{2+} by RE^{3+} cations in the series $RECu_3Mn_4O_{12}$ (RE=Pr, Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb); the concomitant electronic injection leads to a substantial contribution to T_C . The crystal structures of the new materials were refined in the space group $Im\bar{3}$ from NPD data for the non-absorbing RE cations. The unit cell parameters are considerably expanded with respect to $CaCu_3Mn_4O_{12}$, as a result of the electronic injection. The r.t. magnetic structure displays a ferrimagnetic coupling between $Mn^{3+/4+}$ and Cu^{2+} spins; at low temperatures there is an antiferromagnetic coupling of the RE^{3+} moments with the Mn substructure, which substantially reduces the susceptibility and the saturation magnetization.

Key words: Perovskite Oxide, Colossal Magnetoresistance, Ferrimagnetic Oxide, Neutron Powder Diffraction, Unusual Oxidation States