Further Guaianolides from *Amphoricarpos neumayeri* ssp. *murbeckii* from Montenegro

Iris Djordjević^a, Milka Jadranin^b, Vlatka Vajs^b, Nebojša Menković^c, Vele Tešević^d, Slobodan Macura^e, and Slobodan Milosavljević^d

^a Faculty for Veterinary Medicine, University of Belgrade, Bulevar JA 18, 11000 Belgrade, Serbia

b Institute for Technology and Metallurgy, Njegoševa 12, 11000 Belgrade, Serbia
c Institute for Medicinal Plant Research, "Dr. Josif Pančić", Tadeuša Košćuška 1, 11000 Belgrade, Serbia

d Faculty of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 158, 11001 Belgrade, Serbia

e Department of Biochemistry, Mayo Clinic, College of Medicine, Rochester, MN 55905, USA

Reprint requests to PhD. S. Milosavljević. Fax: +381 11 636 061. E-mail: smilo@chem.bg.ac.yu

Z. Naturforsch. **61b.** 1437 – 1442 (2006): received April 4, 2006

Dedicated to Daniel Vincek, Botanic Garden Dulovine, Kolašin, Montenegro on the occasion of his 80th birthday

The aerial parts of Amphoricarpos neumayeri ssp. murbeckii afforded eleven guaianolides with the same relative $(1\alpha H, 4\beta H, 5\alpha H, 7\alpha H)$ configuration of the basic skeleton. All of them contained a CH_2OX (X = H, acetyl or isovaleroyl) group in 4α -position, typical for amphoricarpolides. Four compounds (1-4) were isolated before from the same species, originating from different localities. Guaianolides 5-11 are new compounds. Compounds 7 and 8 were epoxidized at the $10\alpha(14)$ -position. Instead of the $\Delta^{11(13)}$ -double bond, observed in all previously isolated guaianolides from the same species, the four lactones contained $11\alpha,13$ -diol (8-10) or 11α -OH,13-chloro (11) moieties respectively.

Key words: Amphoricarpos neumayeri ssp. murbeckii, Sesquiterpene Lactones, Guaianolides