Amanicadol, a Pimarane-type Diterpene from *Phlomis amanica* Vierch.

Funda N. Yalçın^a, Tayfun Ersöz^a, Erdal Bedir^b, Ali A. Dönmez^c, Michael Stavri^d, Mire Zloh^e, Simon Gibbons^d, and İhsan Calıs^a

- ^a Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, 06100, Sıhhiye, Ankara, Turkey
- ^b Ege University, Faculty of Engineering, Department of Bioengineering, 35100, Bornova, İzmir, Turkey
- ^c Hacettepe University, Faculty of Science, Department of Biology, 06532, Beytepe, Ankara, Turkey
 ^d Centre for Pharmacognosy and Phytotherapy, The School of Pharmacy, University of London,
 29 39 Brunswick Square, London WC1N 1AX, United Kingdom.
- ^e Department of Pharmaceutical and Biological Chemistry, The School of Pharmacy, University of London, 29 – 39 Brunswick Square, London WC1N 1AX, United Kingdom

Reprint requests to Dr. Funda N. Yalcın. Fax: +90 312 311 4777. E-mail: funyal@hacettepe.edu.tr

Z. Naturforsch. 61b, 1433 – 1436 (2006); received March 16, 2006

Fractionation of the methanol extract of *Phlomis amanica* resulted in the isolation of a new pimarane type diterpene, amanicadol (1), together with the known glycosides lamiide, verbascoside (= acteoside), syringaresinol-4-O- β -glucoside, liriodendrin, syringin, and a caffeic acid ester, chlorogenic acid. The structure of the new compound was established on the basis of extensive 1D and 2D NMR spectroscopic data interpretation. Molecular modeling studies on 1 were conducted and showed that it exhibited low conformational flexibility. Additionally, NMR chemical shifts were calculated for 1 *in vacuo*, and calculated values were in very close agreement with those found experimentally.

Key words: Phlomis amanica, Lamiaceae, Amanicadol, Diterpene, Pimarane