Structural, Magnetic and Electrical Properties of the Ternary Silicide $Gd_6Co_{1.67}Si_3$ Derived from the Hexagonal $Ho_4Co_{3.07}$ (or $Ho_6Co_{4.61}$) Type Structure Etienne Gaudin^a, François Weill^{a,b}, and Bernard Chevalier^a a Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), CNRS [UPR 9048], Université Bordeaux 1, Avenue du Docteur A. Schweitzer, F-33608 Pessac Cedex, France b Centre de Ressource en Microscopie Electronique et Microanalyse, CREMEM, Université Bordeaux 1, 350 Cours de la Libération, F-33400 Talence Cedex, France Reprint requests to Dr. B. Chevalier. E-mail: chevalie@icmcb-bordeaux.cnrs.fr Z. Naturforsch. **61b**, 825 – 832 (2006); received February 23, 2006 Dedicated to Professor Wolfgang Jeitschko on the occasion of his 70th birthday The title compound was discovered as an impurity phase in many GdCoSi samples. It crystallizes in the hexagonal space group $P6_3/m$ with a=11.7787(5) and c=4.1640(2) Å. Using X-ray powder diffraction, an ordered distribution between Co and Si was found but one site is not fully occupied by Co for steric reasons. Magnetization measurements reveal that $Gd_6Co_{1.67}Si_3$ exhibits a ferromagnetic transition at $T_C=294(2)$ K, a Curie temperature similar to that reported for pure gadolinium. This magnetic ordering has been confirmed by electrical resistivity investigations. Key words: Rare-Earth Intermetallics, Electron Microscopy, Crystal Chemistry of Intermetallics, Magnetic Properties, Electrical Resistance