Syntheses and Properties of Cycloamidines Based on 4*H*-Imidazoles*

Rainer Beckert^a, Catharina Hippius^a, Tillmann Gebauer^a, Frances Stöckner^a, Christina Lüdigk^a, Dieter Weiß^a, Dietrich Raabe^a, Wolfgang Günther^a, and Helmar Görls^b

^a Institut für Organische und Makromolekulare Chemie, Friedrich-Schiller-Universität, Humboldtstr. 10, D-07743 Jena, Germany

b Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität, August-Bebel-Str. 2, D-07743 Jena, Germany

Reprint requests to Prof. Dr. R. Beckert. E-mail: C6bera@uni-jena.de

Z. Naturforsch. **61b**, 437 – 447 (2006); received January 25, 2006

Dedicated to Prof. Dr. Karel Waisser on the occasion of his 70th birthday

Employing three different syntheses a broad spectrum of 4H-imidazoles $3\mathbf{a} - 3\mathbf{s}$ has been synthesized. In the course of the two-fold aminolysis reaction leading to derivatives $3\mathbf{q} - 3\mathbf{s}$, deeply colored byproducts could be isolated and structural characterized. These novel donor-acceptor derivatives of type 7 consist of an 1H- and 4H-imidazole which are connected by a nitrogen bridge and rearrange via rapid 1,3-/1,5-hydride shifts. Using ${}^{1}H$ NMR experiments the aminolysis product $3\mathbf{p}$ shows prototropic isomers which could be detected in equilibrium for the first time. Cyclovoltammetric measurements of a series of substituted 2-aryl derivatives $3\mathbf{d} - 3\mathbf{i}$ displayed two reversible single electron transfer steps with relatively small semiquinone formation constants between 10^2 and 4×10^3 . The 4H-imidazole $3\mathbf{d}$ was successfully converted into boratetrazar-pentalene $8\mathbf{a}$, which showed two well separated reduction potentials. The value of semiquinone formation constant of $8\mathbf{a}$ (1.8×10^{15}) is even higher than those reported for similar derivatives. 4H-imidazoles can also be employed for the efficient complexation of catalytically important metals as exemplified by copper complexes 11 and 12. Derivative $3\mathbf{m}$, which possesses an additional chelating pyridine substructure, formed a stable complex of structural composition $2\mathbf{n}(3\mathbf{m})_2$ with diethyl zinc.

Key words: Fulvenimines, 4H-Imidazoles, Aminolysis, Diazaborolidines, Metal Complexes, Redox Systems